
RTFM! Automatic Assumption Discovery and Verification
Derivation from Library Document for API Misuse Detection

Tao Lv1,2, Ruishi Li1,2, Yi Yang1,2, Kai Chen1,2,∗
Xiaojing Liao3, XiaoFeng Wang3, Peiwei Hu1,2, Luyi Xing3

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington
{lvtao,liruishi,yangyi,chenkai,hupeiwei}@iie.ac.cn,{xliao,xw7,luyixing}@indiana.edu

Abstract
To use library APIs, a developer is supposed to follow guidance
and respect some constraints, which we call integration assump-
tions (IAs). Violations of these assumptions can have serious conse-
quences, introducing security-critical flaws such as use-after-free,
NULL-dereference, and authentication errors. Analyzing a program
for compliance with IAs involves significant effort and needs to be
automated. A promising direction is to automatically recover IAs
from a library document using Natural Language Processing (NLP)
and then verify their consistency with the ways APIs are used in a
program through code analysis. However, a practical solution along
this line needs to overcome several key challenges, particularly the
discovery of IAs from loosely formatted documents and interpre-
tation of their informal descriptions to identify complicated con-
straints (e.g., data-/control-flow relations between different APIs).

In this paper, we present a new technique for automated assump-
tion discovery and verification derivation from library documents.
Our approach, called Advance, utilizes a suite of innovations to
address those challenges. More specifically, we leverage the obser-
vation that IAs tend to express a strong sentiment in emphasizing
the importance of a constraint, particularly those security-critical,
and utilize a new sentiment analysis model to accurately recover
them from loosely formatted documents. These IAs are further
processed to identify hidden references to APIs and parameters,
through an embedding model, to identify the information-flow re-
lations expected to be followed. Then our approach runs frequent
subtree mining to discover the grammatical units in IA sentences
that tend to indicate some categories of constraints that could have
security implications. These components are mapped to verification
code snippets organized in line with the IA sentence’s grammatical
structure, and can be assembled into verification code executed
through CodeQL to discover misuses inside a program. We imple-
mented this design and evaluated it on 5 popular libraries (OpenSSL,
SQLite, libpcap, libdbus and libxml2) and 39 real-world applications.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3423360

Our analysis discovered 193 API misuses, including 139 flaws never
reported before.

CCS Concepts
• Security and privacy→ Vulnerability scanners; • Software
and its engineering→ Software safety.

Keywords
API misuse; Integration assumption; Verification code generation;
Documentation analysis
ACM Reference Format:
Tao Lv, Ruishi Li, Yi Yang, Kai Chen, Xiaojing Liao, XiaoFeng Wang, Pei-
wei Hu, Luyi Xing. 2020. RTFM! Automatic Assumption Discovery and
Verification Derivation from Library Document for API Misuse Detec-
tion. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’20). ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3372297.3423360

1 Introduction
Today’s software is more composed than built, with existing pro-
gram components, even online services, being extensively reused,
often through integration of their Application Programming In-
terfaces (APIs). These APIs may only operate as expected under
some constraints (referred to as integration assumptions or IA in
our research), on their inputs (called pre-conditions, like a limit on
parameter lengths), outputs (called post-conditions, e.g., “return 1 or
0”) and invocation context (called context conditions, such as “must
be called from the same thread”), which their users should be aware
of. Although these IAs are typically elaborated in library documen-
tation, they may not be strictly followed by software developers,
as reported by prior studies [42, 44]. This affects the functionality
of the software using these APIs, and often comes with serious
security or privacy implications. As an example, setuid, which
temporarily carries a high privilege, is expected to drop its privilege
when its task is done, and failing to do so needs to be checked, as
indicated in the libstdc documentation “it is a grave security error
to omit to check for a failure return from setuid()”; this instruction,
however, has not been respected by PulseAudio 0.9.8, leading to a
local privilege escalation risk (CVE-2008-0008).

The fundamental cause of API misuse is that developers do not
follow the IAs of APIs in documents, which therefore becomes the
key sources for API misuse discovery. Prior research on API misuse
detection and API specification discovery [21, 30, 37, 41, 52] rely on
analyzing a set of code to infer putative IAs, so as to identify API
misuses. However, these IAs are often less accurate, introducing

https://doi.org/10.1145/3372297.3423360
https://doi.org/10.1145/3372297.3423360

significant false positives. In the meantime, the limited coverage
of the code set can also cause many real-world misuse cases to fall
through the cracks (Section 5.3).
Finding misuse from doc: challenges. Alternatively, one can
recover their IAs from documentation for a compliance check on
the software integrating them, which leverages more semantic in-
formation and therefore can be more accurate. Given the size of
today’s library documents (e.g., 327 pages for OpenSSL), manual
inspection becomes less realistic. Prior research seeks to automate
this process by inferring these assumptions using natural language
processing (NLP) [42, 44, 47]. Particularly, it has been shown that
for the well-formatted C# documents, a set of templates that specify
the relations between subject and object are adequate in recovering
IAs. This simple approach, however, no longer works well on less or-
ganized documents, like those for most C libraries, such as OpenSSL,
where IA descriptions can be hard to fit into any fixed templates:
as an example, we ran the code released by the prior research on
OpenSSL and only observed accuracy of 49% (Section 5.3). How to
effectively identify the API constraints from such documents turns
out to be nontrivial.

Also the challenge is to automatically analyze each IA and de-
termine a program’s compliance with the assumption. The prior
research maps a set of predicates on pre- and post-conditions to
formal expressions (e.g., “greater” to “>”) [44]. Less known is how
these predicates are selected and whether they are representative.
Most concerning is the missing of semantic analysis on context
conditions (except on API order [42, 54]), which can describe the
information flow relations (between calls or between the caller
and the callee) that must be established to avoid security or pri-
vacy fallouts. For example, the libpcap document describes how a
program should use two APIs pcap_close and pcap_geterr: “you
must use or copy the string before closing the pcap_t”. Here, the
references to pcap_geterr and pcap_close are implicit, through
natural language description (“close” and “pcap_t”), which spec-
ifies information-flow connections: one needs to use the output
of pcap_geterr (“string” in the IA) – a data flow, before running
pcap_close to terminate the handler pcap_t – a control flow. Viola-
tion of this IA could lead to a use-after-free bug (Figure 2). Discovery
and interpretation of such relations are by no means trivial.

Given the challenges in automatic IA discovery and semantic anal-
ysis on loosely organized library documents for the API compliance
check, so far we are not aware of any end-to-end solution that has been
applied to real-world software and led to the discovery of security-
critical bugs, particularly those never reported before.
Advance. Recent years have witnessed significant progress made
in machine learning and NLP (e.g., Gated recurrent unit (GRU) and
Attention) techniques, in terms of performance and effectiveness,
which potentially offers new means to address the challenges in
API misuse detection from library documentation. In this paper,
we report a new attempt to innovate over these new techniques,
which moves the state-of-the-art of IA discovery and compliance
check a step forward, enabling detection of security-critical API
misuse from real-world applications. Our technique, dubbed Ad-
vance (assumption discovery and verification derivation from the
document), is capable of automatically analyzing less organized C

library documentation to recover and interpret IAs and then trans-
lating them into verification code executed by CodeQL [4] to find
the API misuses in a program’s API integration. For this purpose,
Advance is designed to overcome the technical barriers mentioned
earlier, based upon several key observations. More specifically, we
found that with the diversity in the ways IAs are described, the
related sentences are characterized by a strong sentiment to empha-
size the constraints that API users are expected to follow: e.g., “the
application must finalize every prepared statement”; “make sure that
you explicitly check for PCAP_ERROR”; “it is the job of the callback
to store information about the state of the last call”. Such sentiments
cannot be easily described by templates but can be captured using
semantic analysis. In our research, we utilized a Hierarchical Atten-
tion Network (HAN) [51] to capture the sentences carrying such
a sentiment when the entities (API names, parameters) under the
constraint (as expressed by the sentiment) can be controlled by the
API caller (Section 3.2). This has been done by training a classifier
named S-HAN on 5,186 annotated data items, which is shown to
work effectively in inferring IA sentences from library documents.

Also discovered in our research is the pervasiveness of similar IA
components within a document and in some cases, across different
libraries. These components imply common assumption (constraint)
types for certain kinds of operations, which are often among the
most important and can be security critical. For example, “... is
not threadsafe”, an expression describing thread safety; “... must be
freed by...”, an IA asking for resource release – an operation with a
significant security implication. Leveraging this observation, our
approach automatically parses IA sentences into dependency trees
and runs frequent subtree mining [53] to discover the components
(called Code Descriptions or CDs, which are the smallest textual
description units that can be mapped to verification code snippets.)
for such common assumption types. Each of such assumptions is
then mapped to a verification code snippet (VCS) for building up the
complete verification code (VC), which may contain multiple VCSes
(Section 3.4). Our research shows that the discovered assumption
types cover 75% of CDs in the IAs (the column “CD-Cov” in Table 2).

To discover the context condition from an IA sentence, we cap-
italize on the observation that although the reference to an API
or its parameters can be implicit, its semantics must come close
to the description of its functionalities. For example, “closing the
pcap_t” represents the API pcap_close and pcap_t is from the
first parameter of pcap_geterr. Therefore, we trained a sentence
embedding model in our research to convert the components of
each IA sentence, as identified through shadow parsing, into vec-
tors, so as to compare their similarity with those generated from
the descriptions of different APIs (Section 3.2). In this way, not
only can we discover the implicit reference to APIs and parameters,
but we can also find out the data-flow (through parameters) and
control-flow (through invocations) relations among APIs that form
assumption types.
Discoveries. In our research, we implemented Advance on Stan-
fordCoreNLP [38], AllenNLP [26], TREEMINER [53] andCodeQL [4],
and further evaluated our prototype on the documentations of 5
popular libraries, including OpenSSL, SQLite, libpcap, libdbus and
libxml2. Our study shows that Advance can effectively identify IA

sentences, achieving an accuracy of 88% (on labeled dataset). Also,
our prototype successfully recovered over 69% of IAs.

Further running our prototype on 39 applications integrating
these libraries, including popular programs like wireshark, open-
vpn and ettercap (Section 5.4), our approach detected 193 instances
of API misuse, including 139 problems never reported before. So
far 16 of them have already been confirmed by the application
developers. Many of these cases are security-relevant, with 6 of
them documented by CVEs. These newly discovered API misuses
can lead to system crash (NULL-dereference), DoS attacks or in-
formation leakage (improper resource shutdown or release) . As
far as we know, this is the first time that an NLP-based end-to-end
API misuse system automatically captures new security bugs by
analyzing loosely organized documents. We will release the first
version of Advance through Github later1.
Contributions. The contributions of this paper are summarized
as follows:
•New technique.We developed a novel technique for automatic, end-
to-end IA discovery and verification code derivation. Our approach
addresses several key technical barriers that prior research fails
to overcome, including the use of sentiment analysis to recover
assumptions from loosely organized library documents, subtree
mining to identify the common operations related to the integration
assumption, and sentence embedding to detect implicit description
of information flows. These innovations enable a new end-to-end,
document-to-code analysis capability and contribute to the advance
of scientific research in this area.
• Implementation and discoveries. We implemented our technique
and open-sourced our prototype. The evaluation of our prototype
on popular libraries and real-world applications leads to the discov-
ery of 193 API misuses (most with significant security or privacy
implications), including 139 bugs never reported before. Such dis-
coveries have never been made automatically on loosely organized
API documents before, up to our knowledge.

2 Background
2.1 API Misuse
Software libraries often come with documentation that describes
how to use their APIs properly, under constraints. Failure to follow
such guidance can lead to API misuses, breaking the constraints
on API inputs (e.g., overlong input parameters), the usage of out-
puts (e.g., unchecked return value), and the context for API invo-
cations (e.g., inverse invocation sequence). Such misuses can have
serious consequences, affecting the functionality of the software
integrating these APIs, often with security or privacy implications,
such as memory leaks, denial of service through application crash,
etc. For example, most libraries require the application integrat-
ing their APIs to free allocated variables after its whole lifetime,
which is usually specified in the API documentation. If the appli-
cation fails to do so, a bug can be introduced (CWE-401: Missing
Release of Memory after Effective Lifetime), which will cause mem-
ory over-consumption, resulting in a denial of service (by crashing
or hanging the program). Despite the fact that such security-critical

1The release information is available at: http://kaichen.org/tools/Advance.html

constraints are described in the documentation, API misuse is still
one prevalent cause of software bugs [35].

2.2 NLP primitives
To analyze the library documentations, we leveraged a set of NLP
techniques in our research. They are briefly introduced here.
Dependency parsing. Dependency parsing is an NLP technique
to analyze the grammatical relations between the linguistic units
(words) in one sentence and extract the syntactic structure of this
sentence. As illustrated in Figure 4(a), in a dependency tree, the
verb of a clause structure is the root and the other linguistic units
are nodes linked by grammatical relations to the root. According
to the Stanford Parser manual [1], there exist approximately 50
grammatical relations. In our research, we utilize the AllenNLP
parser [26] to generate dependency trees for mining CDs.
Word embedding. A word embedding𝑊 : 𝑤𝑜𝑟𝑑𝑠 → 𝑉𝑛 is a pa-
rameterized function mapping words to vectors (200 to 500 dimen-
sions), e.g.,𝑊 (“𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛”) = (0.2,−0.4, 0.7, ...), which captures a
word’s relation with other words in its context. Among the word
embedding methods, word2vec [40] is a state-of-the-art and com-
putationally efficient technique. Such a mapping can be done in
different ways, e.g., using the continual bag-of-words model and
the skip-gram technique to analyze the context in which the words
show up. Such a vector representation ensures that synonyms are
given similar vectors and antonyms are mapped to dissimilar vec-
tors. In our study, we utilized word2vec to generate semantic word
vectors from library documentation for the sentiment analysis.
Sentiment analysis. Sentiment analysis, also known as opinion
mining, is a technique using NLP and text analysis to identify, ex-
tract, and study the opinion and subjective information. One of its
main tasks is sentiment classification, which aims to classify the po-
larity of the text into positive or negative opinions. Recent research
focuses on leveraging Deep Learning (DL) classifiers for sentiment
classification. Popular off-the-shelf models include Text-CNN [32],
RCNN [34], and HAN [51]. In our research, we compared the effec-
tiveness of the aforementioned models and utilized a variance of
HAN in discovering the sentences with IA (Section 3.2).

3 Advance: Design
In this section, we elaborate on the design and implementation of
Advance – our technique for automatic assumption discovery and
verification code derivation. We first give an overview of the whole
design, its architecture and an example that shows how it works,
and then move onto its individual components.

3.1 Overview
Architecture. Figure 1 illustrates the architecture of Advance, in-
cluding three key components: IA discovery, IA dereference and

Library
Document

Application
Code

VC
generation

Satisfy?
VCs

IA
discovery
1

Misuses

IAs IA
dereference
2

IAs

3

Figure 1: Architecture of Advance

VC generation, together with its workflow. Specifically, at step 1 ,
IAs are automatically discovered from the loosely structured API
descriptions in the documents, through an S-HAN-based classifier
that identifies IAs from the sentiments in the text. Then for each IA,
Advance replaces its implicit references to APIs or their parameters
with explicit ones (called IA dereference, step 2). For this purpose,
our approach utilizes semantic analysis and lexical analysis to map
from the descriptions to their corresponding APIs/parameters. Fi-
nally, after identifying the code descriptions (CDs) in IAs and their
context conditions, Advance generates CD trees to organize those
CDs, which are utilized to produce verification code (VC) under
the context (step 3). The generated VC can then be executed by
CodeQL to find the bugs in a program’s API integration.
Example. Figure 2 explains how Advance works through an ex-
ample. The code snippet in Figure 2(a) is extracted from a popular
application named tcpdump, which utilizes two APIs from libp-
cap: pcap_geterr, pcap_close. Here pcap_geterr is first used to
get the information about network packet errors, and store it to
the memory referenced by the returned pointer cp (of the han-
dler pcap_t). pcap_close closes pcap_t and therefore releases the
memory including the error message pointed to by cp. However, in
Line 1088, tcpdump tries to print out the error message using the
invalid pointer cp, which introduces a use-after-free bug.

Actually, the libpcap document describing pcap_geterr clearly
states that “you must use or copy the string before closing the pcap_t”
(Figure 2(b)). This guidance, however, has not been followed by the
developers of tcpdump. Advance is able to detect this API misuse.
More specifically, it first automatically identifies from the libpcap
document the above sentence, which is considered to contain the
IA based upon the sentiment (“you must ...”). However, the sentence
cannot be directly translated into the verification code, as it is not
clear what means by “string”, “pcap_t” and “closing”. To make sense
of such description, Advance continues to perform IA dereference
and find that “string” indicates the return value of pcap_geterr,
"closing" refers to pcap_close and “pcap_t” is its parameter. By fur-
ther analyzing the context conditions (i.e., “before”), Advance con-
structs the CD tree (Figure 2(c)) for VC generation. As shown in the
CD tree, the return value of pcap_geterr (i.e., cp) should be used
before pcap_close operates on the parameter of pcap_geterr (i.e.,
pc). This tree is used to generate the verification code based upon
the following code snippets: “argv2.getASuccessor+() = argv1”
for “before”, “Expr reach,definitionReaches(argv, reach)”
for “use”, “FunctionCall fc, LocalScopeVariable v, Variable
Access u, fc.getTarget().hasQualifiedName(“argv1”) and
v.getAnAccess() = argv2 and u = v.getAnAccess() and
fc.getAnArgument() = u” for “call with”. The code is then used
to inspect tcpdump to find the misuse.

3.2 IA Discovery
As mentioned earlier, automatically extracting IAs from documents,
especially those less structured, is nontrivial. Template or keyword
based approaches, as proposed by previous studies [44], do not
work well. Particularly, in the presence of the API documents from
different developers, not conforming with any writing convention,
finding templates to cover most IAs is found to be a mission impos-
sible. A key observation in our research is that with the diversity of

1080 cp = pcap_geterr(pc);

...

/* close the pcap_t "pc" */

1087 pcap_close(pc);

/* use the returned string "cp" */

1088 snprintf(ebuf, PCAP_ERRBUF_SIZE, "%s: %s\n(%s)",

1089 device, pcap_statustostr(status), cp);

pcap_geterr() returns the error text pertaining to the last
pcap library error. …
you must use or copy the string before closing the pcap_t.

(a) Tcpdump source code calling pcap_geterr

(b) The IA in libpcap document

after

Misuse!

before

use pcap_close

pcap_geterr_0 pcap_geterr_1

(c) CD tree, pcap_geterr_0 and pcap_geterr_1
represent the return value

and first parameter of pcap_geterr respectively

application
code

Library
document

CD tree

Figure 2: An example of the API misuse
writing styles, all IAs properly presented in the documents are char-
acterized by a strong sentiment to stress the constraints. Actually
the more important the IAs are, the more forceful the descriptions
would be. For example, the document of SQLite states “the applica-
tion must finalize every prepared statement”; an IA in libpcap alerts
the developer “make sure that you explicitly check for PCAP_ERROR”.
Based on these observations, our design of Advance utilizes senti-
ment analysis to capture these assumptions.
Sentiment-based IA classifier. Specifically, we utilize the Bi-
GRU-based encoder [24] and an attention mechanism [49] to dis-
cover IAs: Bi-GRU-based encoder is suitable for learning the context
of one sentence to generate a representation, while the attention
mechanism focuses the model more on sentimental words, which
developers often use in IAs to make sure the APIs are correctly
used. Particularly, inspired by the Hierarchical Attention Networks
(HAN) [51], one of the most popular models that integrate the
Bi-GRU-based encoder and the attention mechanism, we design a
new model called Sentence-HAN, or S-HAN for short, to extend the
conventional HAN, which is meant to classify documentation, for
sentence classification. Figure 7 in Appendix illustrates the design
of S-HAN. Its bottom layer is the word encoder, which includes Bidi-
rectional GRUs that get annotations of the words through collecting
information from both directions of a sentence. The inputs of the
encoder are the vectors of words 𝑤𝑖 produced by an embedding
model and its outputs are the word annotations ℎ𝑖 . Considering
that different words do not contribute equally to the result of classi-
fication, an attention layer is added after the encoder to underline
sentiment-related expressions: the Multilayer Perceptron (MLP) in
the attention layer receives 𝑢𝑖 to output the attention weight 𝑎𝑖
through the softmax function. Finally, word annotation vectors ℎ𝑖
are summed based upon the attention weight 𝑎𝑖 into a sentence
vector 𝑣 , i.e., 𝑣 =

∑𝑇
𝑖=1 𝑎𝑖ℎ𝑖 , and the vector is used for classification

through a softmax function.

Since there is no open dataset for training our model, we man-
ually collected and annotated 2,601 IAs (1,296 IAs are from back-
translation) and 3,881 non-IA from OpenSSL documentation. Since
IAs only appear on a small set of sentences, we utilized the back-
translation [25] to augment the dataset: by translating a sentence
in English to another kind of language (e.g., Spanish) and then
translating it back, we could get more sentences with similar mean-
ings. Then these sentences could be added to our dataset. In our
evaluation, S-HAN achieved an accuracy of 88% in discovering IAs
(Section 5.2), more accurate than other models (e.g., Text-CNN and
RCNN). Also, from the attention layer, we observed the words in
a sentence that have significant impacts on the classification re-
sults. For example, in the sentence “It is the caller’s responsibility
to free this memory with a subsequent call to OPENSSL_free”, the
word “responsibility” reflects a strong sentiment, indicating an IA
being communicated, which is in line with what we see from the
documents.

3.3 IA Dereference
To interpret a discovered IA, oftentimes we need to identify its im-
plicit references to an API name or parameters. For example, in the
IA “The application must finalize every prepared statement”, “final-
ize every prepared statement” refers to the API sqlite3_finalize
and “prepared statement” indicates the third parameter of the API
sqlite3_prepare. These references are critical for understanding
the information-flow relations between the caller and the API being
called and between different API invocations. Without resolving
them, an IA cannot be translated into the verification code. To
address this problem, Advance utilizes existing tools, such as Al-
lenNLP [26] and NeuralCoref [29], to eliminate anaphora. However,
none of such techniques can address subtle implicit references, as
those in the above example. Our solution is a semantic-based ap-
proach for API dereference and a lexical analysis for parameter
discovery, as elaborated below.

1 Nall:{<NN.*|CD|LS.*|PRP$ >}
2 Npre:{<DT|PDT|PRP|CD >}
3 VADV:{<RB.*>*<VP|VB.*>}
4 NP:{<JJ.*>*<Nall >+}
5 VP_passive :{<Nall >+<MD >?<VADV ><RB.*>?<VADV >+}
6 VP_active :{<VADV ><IN >*<Npre >*<RB.*>*<JJ.*|VBN|VBG >*<

Nall >+}

Listing 1: Shallow parsing grammars

Semantics-based API dereference. Our dereference solution is
based upon the observation that an implicit API reference should be
semantically similar to the descriptions of the API’s functionalities.
This allows us to compare their semantic meaning to identify those
closely-related pairs. To this end, Advance performs efficient NLP
analyses such as a shadow parsing to recover these references from
IAs and then analyze their semantics and that of API description
through sentence embedding.

Specifically, an implicit reference to an API describes its op-
erations, which typically contains verb. Therefore, to find these
references, we utilize the Part-of-Speech (POS) tagging, and shal-
low parsing [46] to mark words in discovered IA sentences and
recover all verbs. For example, in Figure 3, after parsing the IA
“The application must finalize every prepared statement”, the word
“finalize” is recognized as a verb (tagged as “VB”) and the word

The application must finalize every prepared statement

int sqlite3_prepare(… , sqlite3_stmt ** ppStmt, ..)2
The sqlite3_finalize function

is called to delete a prepared statement.

3

Dereference API descriptions Dereference parameters

The application must call sqlite3_finalize_API with sqlite3_prepare_param_34

DT NN MD VB DT JJ NN

1

POS tagging

Figure 3: Example of IA dereference process (API and
parameter dereference). After POS tagging, IA (➂) was
parsed to recognized “finalize every prepared statement”
as a verb phrase and “prepared statement” as a noun
phrase. These phrases were then dereferenced to the API
sqlite3_finalize (based on API functionality sentence ➀)
and the parameter ppStmt of sqlite3_prepare (based on API
declaration ➁), to obtain the dereferenced IA (➃).

“statement” is a noun (tagged as “NN ”), which are combined into
a verb phrase (tagged as “VP”). To identify different types of verb
phrases (e.g., VBN and VBP), our approach leverages a set of rules
that describe these VPs based upon their POS (in Listing 1) and
further utilizes regular expressions to apply the rules on the parsed
sentences to captures the verb phrases. For example, VP includes
active verb phrases (VP_active), such as “finalize every prepared
statement”, and passive verb phrases (VP_passive), like “The string
must be deallocated”. VP_passive is composed of at least a noun (i.e.,
Nall) and a verb (i.e., VADV). Sometimes, a modal verb (i.e., MD)
may also exist between the noun and the verb, and more verbs may
also be included. Listing 1 presents the details of these rules2. Note
that some extracted verb phrases are API references, which are
identified through comparison with API descriptions.

An API description is characterized by the appearance of the API
name at the beginning of a paragraph. This allows us to extract the
sentences from the paragraphs to compare their semantic meanings
with that of the verb phrases discovered from IAs. In our research,
we found that typically the first sentence of the API description
explains its functionality, so it is picked out for the comparison. For
this purpose, Advance utilizes sentence embedding to transform a
sentence into a vector to represent its semantics. Here, the embed-
ding model was trained in our research, without supervision, on
each library. The semantic comparison is performed by calculating
the cosine similarity between the vector for a verb phrase and that
of the API functionality sentence (𝑆1 and 𝑆2), i.e., 𝑠𝑖𝑚 =

𝑆1 ·𝑆2
∥𝑆1 ∥ ∥𝑆2 ∥ .

Looking at similar pairs, our approach captures an implicit API
reference from a verb phrase and dereferences it using the closest
API functionality sentence3 in semantics to the phrase. Then we re-
place the reference with “call #API with #noun_phrase”, where #API
is the name of the API discovered, and #noun_phrase is the noun in
the verb phrase (“prepared statement” in the example). As shown in
Figure 3, the IA is transformed to “call sqlite3_finalize_API with pre-
pared statement”. In the absence of matched API descriptions (that
is, low similarity across all sentences), a verb phrase is not consid-
ered to contain API reference. Our experiment shows this approach
is quite effective, achieving an accuracy of 94% (Section 5.2).

282 POS tags are given in the website: http://www.surdeanu.info/mihai/teaching/
ista555-fall13/readings/PennTreebank.html.
3An API functionality sentence describes the API functionality.

http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebank.html
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebank.html

Dereferencing parameters. Unlike the implicit API reference, a
subtle indication of an API parameter in an IA has lexical connec-
tions to the name of the parameter, which is meant for a reader to
easily locate the related code: we found in our research that in most
cases, such a reference is in one of three forms – an abbreviation
of a parameter name (e.g., name for “zName”), an extension of the
name (e.g., using “prepared statement” to describe the parameter
ppStmt), or the type of the parameter (e.g., sqlite3_snapshot).
Based on this observation, our approach compares the semantics of
a possible reference with a associated parameter’s name and type
to report the most similar pair.

Specifically, we first recover possible parameter references from
IA sentences. Such references are often in the form of noun phrases
(tagged as NP) that contain at least one noun (tagged as NP), some-
times with one or more adjectives (tagged as JJ) in front of the
noun. This allows us to construct the rule of NP (see Listing 1)
to detect such references. For API parameters, our approach di-
rectly extracts their names, descriptions, types from the API decla-
rations using regular expressions. For example, in the declaration
int sqlite3_prepare(..., sqlite3_stmt** ppStmt, ...);,
sqlite3_stmt** is the type and ppStmt is the name. Then we use
a regular expression to determine whether the relationship between
the noun phrases (possible references) and the parameter names/-
types can be characterized as abbreviations or expansions. The
details are shown in Section 4.

Note that, in most cases, a dereferenced parameter appears in
the API document at the locations close to the descriptions of the
IA referring to it. So in the presence of multiple candidates (pa-
rameters apparently related to a noun phrase in an IA sentence),
the one located closest to the IA is chosen to replace the implicit
reference (the noun phrase), using its API name and parameter
index (API_param_idx). For example, the parameter reference (in
Figure 3 3) is changed to sqlite3_finalize_param_3 (in 4),
representing the third parameter of sqlite3_finalize.

3.4 Verification Code Generation
After recovering IAs from documentation and resolving the implicit
references, Advance is ready to generate verification code (VC) for
finding API misuses in a program’s API integration. As mentioned
earlier, IAs are highly diverse, containing constraints on APIs’ in-
puts (pre-conditions), outputs (post-conditions), and invocation con-
text (context conditions), which is unlike the simple arithmetic and
logic requirements handled by the prior research [44].

Automatic generation of proper VC even in the form of the veri-
fication tool queries is nontrivial. For example, data dependency
and code sequential should be specified in VC, since otherwise the
verification tool cannot perform the check correctly. One possible
solution is to use machine learning to automatically synthesize the
inspection code, which however requires a large amount of labeled
data for model training that is unavailable for the problem of API
misuse detection. Our solution is based upon an observation that
important and often security-sensitive constraints tend to carry
common components, not only within a document but also across
different documents, indicating the presence of categories of criti-
cal conditions on API use one needs to follow. For example, “the
length of ” is a popular phrase in pre-conditions that indicates a

type of constraints on the size of API parameters. Therefore, our
idea is to break an IA into several small components (called Code
Descriptions or CDs) and only map the most frequently used ones
to verification code snippets (VCSes), which requires minimum
manual effort. Then Advance automatically assembles these VC-
Ses and parameterize them, based upon the combinations of their
CDs in different IAs, to generate the complete VCs. During this
process, the data and control dependencies among CDs are discov-
ered through CD trees, and further preserved in the VC through
traversal of these trees to link different VCSes together. Follow we
elaborate this design.
Code description discovery. Ostensibly the discovery of the
frequently used CDs can be done through a sliding window (N-
grams) to find out the sentence fragments that show up several
times in a document or across documents. This simple approach,
however, does not work well on the analysis of IAs. The N-gram
does not carry any syntactic and semantic information and can
therefore cut into CDs and link less meaningful sentence fragments
together: for example, “data must” (shown in Figure 4 (a)) will be
extracted as a phrase of high frequency when the window size is 2;
however it is not meaningful and does not provide any information
about assumptions to be followed in API integration.

Therefore, Advance takes a syntax and semantics savvy solu-
tion, transforming an IA into a dependency tree and mining the
most frequently used subtrees over its grammatical structure. An
example of an IA’s dependency tree is illustrated in Figure 4 (a).
Here each node of the tree is a word, and different nodes are con-
nected based upon their dependency type. For example, the word
“length” and “the” are linked with the det type. Over such a tree,
we run TREEMINER [53], an algorithm that discovers frequent
subtrees, each of which describes a meaningful grammatical unit
(template) such as a phrase. For example, Figure 4 (a) shows the
dependency trees of two IAs, with four popular subtrees discovered
across documents are circled with dotted lines and labeled (i.e., from
1 to 4), each being an automatically generated template. Note that
we remove negative words (e.g., “not” and “never”), chronological
words (e.g., “before”) and modal verbs (e.g., “should”) from depen-
dency trees before mining, for detection of small meaningful units
that can be easily extended or connected to other units through
these words. As an example, from two descriptions “be used” and
“seldom be used”, only one CD is identified, since “seldom be used”
can be automatically extended from the VCS of “be used”. After
that, for each subtree, we built a VCS (in the verification tool’s
query language) and store it in an initial CD dataset. For example,
in Figure 4 (b), the CD “the length of argv” is converted to the VCS
array_length(argv).

In this way, each IA is then transformed into a dependency tree,
whose subtrees are further compared across those of other IAs to
find popular CDs. Our study shows that this approach can achieve
an accuracy of 75% in detecting CDs (Section 5.2), indicating that
most code descriptions can be captured by popular subtrees.
Verification code generation from CD. Given an IA extracted
from a document, Advance first identifies its CDs by looking up
the initial CD dataset, which as mentioned earlier, contains popular
code description templates as discovered from frequent subtree min-
ing within or across documents. Note that the manual translation of

divisible

the

length

data

of

the in

EVP_DecodeBlock_param_2

must be
by

4dep

dep

prepdet

prep

pobj

nsubj
copaux prep

4

3

length be between 1 and 32

bytes

prep

of

SSL_has_matching_session_id_param_3

pobj

the

det

nsubj
cop amod num

1

2

(a) Two example dependency trees in OpenSSL document

(d) The CD tree corresponding
to the right IA in (a)

be divisible by

the length of 4

array_length(EVP_param_2) % 4 = 0

(c) Generating the final verification
code of CD tree in (d)

be divisible by

4array_length(
EVP_param_2)

2

the length of the data in EVP_DecodeBlock_param_2
must be divisible by 4.

the length of the SSL_has_matching_session_id_param_3
is between 1 and 32 bytes.

pobj

pobj

dep

1

CD VCS

argv1 be between argv2 and argv3 bytes argv1 in [argv2, argv3]

the length of argv array_length(argv)

argv1 be divisible by argv2 argv1 % argv2 = 0

(b) VCSes for CDs

EVP_param_2

*(Abbreviated as EVP_param_2)

Figure 4: An example of automatically generating verification code for checking API misuse.

the CDs in the initial CD dataset to VCSes is a one-time effort and
not required to be done by Advance users. When a subtree 𝑐𝑖 in the
IA is found to match CD 𝑐 𝑗 in the dataset, our approach automati-
cally generates the verification code snippet (VCS) of 𝑐𝑖 (𝑉𝐶𝑆𝑖) by
transforming that of 𝑐 𝑗 (𝑉𝐶𝑆 𝑗). Note that𝑉𝐶𝑆𝑖 may not be identical
to 𝑉𝐶𝑆 𝑗 , since at this point, we need to consider the impacts of
the terms removed, including negative terms (“not”, “seldom”, etc.),
chronological terms, modal words, etc., as mentioned earlier. The
new snippet 𝑉𝐶𝑆𝑖 therefore should be chosen from a variation of
𝑉𝐶𝑆𝑖 in the dataset, according to the term presented. Also impor-
tantly, as a template,𝑉𝐶𝑆 𝑗 or its variation needs to be parameterized
with variables and constants such as number, string (see Figure 4
(a)) before it can be instantiated into 𝑉𝐶𝑆𝑖 . For example, consider
the IA “the length of the data in EVP_DecodeBlock_param_2 must be
divisible by 4”, with a popular CD “the length of argv”, its VCS dis-
covered from the initial CD dataset array_length(argv) need to
be instantiated into array_length(EVP_DecodeBlock_param_2).

After creating the VCSes for individual CDs in an IA, our ap-
proach links them together based upon their relations such as con-
text condition, as described by the dependency tree. To this end,
we convert the dependency tree to a CD tree, which models the
relations between different verification code snippets (VCSes) as
derived from the grammatical relations between their descriptions.
Specifically, each leaf node of the CD tree is the entity representing
variables or constants, and other nodes are CDs. Two CDs are con-
nected if there exists a relation between them in the dependency
tree. For example, Figure 4 (d) shows the CD tree of the IA “the
length of data in EVP_param_2 must be divisible by 4” (in Figure 4
(a)); here the CDs “the length of ” and “be divisible by” are linked
together since “length” and “divisible” are also connected in the
dependency tree (Figure 4 (a)). Also importantly, the directed edges
in the CD tree mostly inherit the orientations of those in the depen-
dency tree, with a CD related to a subtree. The exception is caused
by the temporal CD, which specifies the sequential order between
CDs (e.g., “after”, “before”): in this case, the directed edge always
starts from the temporal CD.

Over the CD tree, Advance generates the full verification code
for the IA by traversing the tree, as presented by Algorithm 1 in
Appendix. Specifically, our approach starts from the left-most leaf
of the tree to retrieve its parent and siblings (Line 2-4), where
the leaf nodes here are the parameters for the VCS template of
their CD parent (Line 5-6). For example, in Figure 4 (c), the CD
“the length of ” has a leaf EVP_param_2; using the VCS template in
Figure 4 (b), the generated VCS is array_length(EVP_param_2)
(Step 1). This process continues until there is only the root node
left in the CD tree. All the VCSes created (through parameterization)
and connected during the traversal then form the IA’s verification
code. Again let us look at the example in Figure 4 (d): the VC
produced is array_length(EVP_param_2)% 4 = 0 (Step 2). In this
way, all pre-/post-/context conditions can be correctly represented
in the VC according to the description in the IA, and are ready for
the verification tool to use to discover API misuses.

4 Implementation
We implemented a prototype of Advance in our research on top
of a set of tools, as described in Table 3 in Appendix. Below we
elaborate on the implementation details of each component.
IA discovery. We trained the Word2vec class of gensim [56] for
100 iterations to build up our own word2vec model, whose word
vector was set to 300 (the commonly used value) and window size
(maximum distance between the current and predicted word within
a sentence) to 3. The training corpus of our Word2vec model was
crawled from the Linux manual pages of library functions [17]
(5.8MB with 40,000 sentences).

We utilized the default parameters of the word part of HAN [51]
to train the S-HAN model, except for a customized setting for
word embedding (dimension 300, batch size 16, and epoch 2). The
backbone of the S-HAN model consists of a bidirectional layer
(50 layers, regularization of L2 with a regularization factor of 1e-
8), a dense layer (100 layers, ReLU activation function, the same
regularization as the bidirectional layer), and an attention layer (1
layer, normal distribution initialization, supportingmasking, and no

regularization). Also, the categorical cross-entropy loss and Adam
optimizer with learning rate 0.001 were used in the model training.
IA dereference. Since the traditional references are in the forms
of pronouns, we combine several tools of anaphora resolution to-
gether, including NeuralCoref [29], AllenNLP [26] and Stanford-
CoreNLP [38]. As the accuracy of the tools is not high (e.g., 58%
for Winograd Schema Challenge), we accept the resolution results
only when the three tools come to the same result. In the process of
dereferencing implicit API and parameter, we perform the shallow
parsing using StanfordCoreNLP [38] to tag the POS of words in
IAs. The threshold of 𝑠𝑖𝑚 is set to the similarity at 10% of the all
the match result, which gives the highest accuracy according to
our evaluation. We select the shorter one among the noun phrase
and the API parameter name or type and then split them into char-
acters. The split characters are joined with “.*” to form the regular
expression. Then the regular expression is used to match to the
longer one to decide whether a noun phrase is a abbreviation of
expansion of the API parameter names or types.
Verification Code Generation. In our implementation, we uti-
lized CodeQL [4], a popular code analysis engine capable of per-
forming information-flow analysis, as a verification tool.

In the process of building the initial CD dataset, a CD may not be
mined out even if it is commonly used. For example, the CD “should
be released” and the CD “should be freed” express the same meaning,
but use different words “freed” and “released”. When Advance mines
the most frequently used sub-tree, they are viewed as different
CDs and may not be viewed as “frequently” used. To handle this
problem, we automatically build a dictionary of synonyms using
our trained Word2vec model and choose the most frequent word
as the representative word for each synonym group. When a word
in an IA appears in the dictionary, we replace the word with the
representative word before mining. In this way, the CDs with the
same meaning could be mined out.

Also, we view the subtree appearing more than 3 times (i.e., the
parameter “minimum-support” equals 3/(the total number of IAs))
as the CD. We mine the CDs from the two libraries (i.e., OpenSSL
and SQLite). In the evaluation, we find the mined CD can cover
75% of the CDs in the documents of other libraries. Details of the
analysis are shown in Section 5.2.

5 Evaluation
In this section, we describe our evaluation on Advance, including
the effectiveness of both its end-to-end operation and individual
components, as well as its run time performance. After that, we com-
pared Advance with static API misuse detectors [30, 52], dynamic
fuzzer [2] and other IA discovery and VC generation approaches,
before presenting an empirical analysis on the detected API misuses
and a case study.

5.1 Experiment Setting
Platform. All our experiments were conducted on one 64-bits
server running Ubuntu 16.04 with 8 cores (Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10GHz), 128GB memory and 3TB hard drive and
2GPUs (12GB Nvidia GPU TiTan X) with CUDA 10.0.
Dataset. To evaluate the effectiveness of Advance, we utilized 5
datasets:

Table 1: Datasets for model training and evaluation.

Libs 𝐷𝑖𝑎𝑑 𝐷𝑑𝑒𝑓 𝐷𝑣𝑐

S IA Non 𝑃𝑖𝑎_𝑣𝑝 𝑃𝑖𝑎_𝑛𝑝 𝑃𝑖𝑎_𝑐𝑑
OpenSSL 4686 1305 3381 225 228 163
SQLite 140 102 38 84 123 66
libpcap 100 60 40 36 54 26
libdbus 177 127 50 61 54 57
libxml2 608 521 87 115 336 108
Total 1129 859 270 521 795 420

• Corpora of library documentations (𝐶𝑑𝑜𝑐). We randomly selected
libraries from different categories on the Ubuntu software package
website [20], including cryptography (OpenSSL), database (SQLite),
XML file parser (libxml2), network packet capture (libpcap) and
inter-process communication (libdbus), and parsed their documents
to recover API related information through lxml [16]. Such infor-
mation is organized in the JSON format [API name, API parameter,
API return type and API description]. In total, we collected the infor-
mation from 3,581 APIs.
• Application dataset (𝐷𝑎𝑝𝑝). For each selected library, we ran “apt-
cache rdepends” (a Linux command to manage Linux packages) to
search for all the applications integrating the library on Github,
Gitlab or sourceforage. In this way, we gathered 39 applications (11
for OpenSSL, 8 for SQLite, 4 for libxml2, 11 for libpcap and 5 for
libdbus).
• Ground-truth API misuse dataset (𝐷𝑎𝑝𝑖). To evaluate false nega-
tives incurred by Advance, we collected a set of known API misuses
related to the aforementioned five popular libraries as the ground
truth. For this purpose, we manually went through CVEs [18] and
also checked the commit logs of the applications from Github [13],
Gitlab [14], and sourceforge [19], where code patchesmay be posted,
disclosing API misuses. After manually inspecting 6,257 commit
logs of 39 applications, we found 66 known API misuses in 27 appli-
cations. Among them, 38 misuses and 20 applications are associated
with libxml2, libpcap and libdbus. The information of these misuses
can be found in Table 5 in Appendix.
• Ground-truth dataset for IA discovery training and evaluation
(𝐷𝑖𝑎𝑑). To generate the training set for S-HAN, we manually anno-
tated 1,305 IAs and 3,881 non-IAs fromOpenSSL, which is the largest
document used in our study.We also performed back-translation [25]
to augment the IA dataset using Google translation [15]. Altogether,
we collected 2,601 IAs (1,296 IAs from back-translation) and 3,881
non-IAs for model training and cross-validation.

To understand the effectiveness of IA discovery on the testing
library documentations, we randomly sampled around 10% of sen-
tences (Column “S” in Table 1) from the other 4 library documenta-
tions (i.e., SQLite, libxml2, libpcap, libdbus), and annotated them as
IA (Column “IA” in Table 1) and non-IA (Column “Non” in Table 1)
for model evaluation.
•Ground-truth dataset for IA dereference evaluation (𝐷𝑑𝑒𝑓). To evalu-
ate IA dereference and VC generation, we randomly sampled around
10% of the IAs reported by the IA discovery step (Section 3.2), which
weremanually confirmed, to manually inspect their IA dereferences.
For this purpose, we annotated 521 IA-VP pairs and 795 IA-NP pairs
as the ground truth for IA-API dereference and IA-parameter deref-
erence (Section 3.3) respectively, as shown in Table 1.

Table 2: Effectiveness of individual components

Libs IA discovery IA dereference VC generationAPI Parameter
ACC F1 FPR FNR ACC F1 FPR FNR ACC F1 FPR FNR Recall FNR CD-Cov

OpenSSL 0.91 0.92 0.08 0.09 0.98 0.67 0.02 0 0.83 0.23 0.18 0 0.55 0.45 0.71
SQLite 0.87 0.78 0.11 0.18 0.96 0.67 0.01 0.4 0.92 0.5 0.07 0.29 0.54 0.46 0.59
libpcap 0.84 0.80 0.12 0.23 0.83 0.4 0.15 0.33 0.89 0.5 0.12 0 0.82 0.18 0.77
libdbus 0.86 0.78 0.13 0.16 0.98 0.8 0 0.33 0.85 0.6 0.15 0.14 0.68 0.32 0.79
libxml2 0.94 0.80 0.06 0.09 0.97 0.78 0.01 0.3 0.94 0.73 0.06 0 0.84 0.16 0.91
Average 0.88 0.82 0.1 0.15 0.94 0.66 0.04 0.27 0.89 0.51 0.12 0.09 0.69 0.31 0.75

• Ground-truth dataset for VC generation evaluation (𝐷𝑣𝑐). To evalu-
ate the effectiveness of VC generation, we utilized the IAs in 𝐷𝑑𝑒𝑓

and manually recovered their associated CDs. These IA-CD pairs
form 𝐷𝑣𝑐 and their number of for each library is shown under
“𝑃𝑖𝑎_𝑐𝑑 ” of Table 1.

5.2 Effectiveness
Here we report the findings made by our evaluation of Advance,
first about its overall effectiveness in identifying API misuse from
the applications integrating the APIs of libpcap, libdbus and libxml2,
and then about the effectiveness of its individual components (i.e.,
IA discovery, IA dereference and VC generation).
End-to-end effectiveness. Since OpenSSL was used for S-HAN
training and later for CD mining along with SQLite, they were
excluded in our experiment for fairly evaluating the end-to-end
effectiveness of Advance. In the experiment, we ran Advance on 20
applications integrating APIs of libpcap, libdbus and libxml2, which
reported 92 API misuses. To validate the results, three researchers
took 2 days to cross-check 𝐷𝑎𝑝𝑖 for known API misuses, and man-
ually verify the results for unknown ones. 83 of the reported API
misuses were confirmed (52 undisclosed and 31 disclosed misuses),
which yields a precision of 90%. Table 4 in Appendix includes these
manually-validated API misuses, along with their security impacts.
Note that we also ran Advance on all five library documents as
detailed in Section 5.4.

Looking into the 9 false positives, we found that all of them were
introduced by CodeQL, which cannot effectively performs a data-
flow analysis. Although our verification code were all correctly
generated in these cases, CodeQL were found to be less effective in
implementing the check, causing the false positives. For example,
consider the code snippet in Listing 3 in Appendix: its IA requires
the pointer assigned through xmlGetProp to be freed, which has
been done after the pointer assigned to a list; however, even though
the code Advance generates for CodeQL indeed correctly invokes
the CodeQL API TaintTracking to track this dataflow, the API
itself fails to discover the connection between the pointer and the
list, thereby falsely claiming discovery of a misuse.

Note that compared with code analysis-based API misuse de-
tectors [30, 52], Advance reports a lower false positive rate (Sec-
tion 5.3). This is because our approach extracts IAs from API docu-
mentation to guide misuse detection in applications, whereas code
analysis-based approaches infer putative IAs through identifying
code invariants, which tend to be less accurate and heavily rely on
the quality of 𝐷𝑎𝑝𝑝 . Further, Advance is unique in its capability
to suppress the false positives incurred by IA discovery and IA
dereference, which could be removed by the strict VC generation

templates (Section 3.4). As a result, wrongly identified IAs may not
be translated into VCs.

To understand false negatives introduced byAdvance, we utilized
the ground-truth set 𝐷𝑎𝑝𝑖 to find out whether it captures known
API misuses (related to libxml2, libpcap and libdbus). The study
shows that our approach reports 31 out of 38 cases in 𝐷𝑎𝑝𝑖 (82%).
Among the 7 cases missed, one is introduced by the error in IA
dereference, another by the mis-classification of S-HAN, and the all
remaining by the failure in CD-to-VCS translation, due to missing
CDs (which are rare and therefore are not translated).
Effectiveness of IA discovery. In our study, we first evaluated the
effectiveness of IA discovery on 1,305 IAs and 3,881 non-IAs from
OpenSSL in 𝐷𝑖𝑎𝑑 using a five-fold cross-validation. Our prototype
achieved a false positive rate of 8% and a false negative rate of 9%
in finding IA, as shown in Table 2.

Further, using the S-HAN model trained on OpenSSL, we ran IA
discovery over the documents of the four other libraries (i.e., SQLite,
libpcap, libdbus, libxml2). Altogether, our prototype identified 542,
249, 799 and 1,671 IAs for SQLite, libpcap, libdbus, libxml2, respec-
tively, which yields an average false positive rate of 10% and a false
negative rate of 15% on 𝐷𝑖𝑎𝑑 (over the four libraries as shown in
Table 1). Table 2 details the experiment results.

When looking into the false positives observed from the model’s
output, interestingly, we found that most sentences falsely labeled
as IAs turn out to indeed contain sentiment terms and state some
constraints, which however are supposed to be followed not by
the developers who integrate the APIs but by those developing,
maintaining or extending the library. For example, the sentence
“Additionally it indicates that the session ticket is in a renewal period
and should be replaced” is falsely labeled as an IA, since it includes
the sentiment word “should” and describes the required operations
to be performed by the OpenSSL library. On the other hand, false
negatives apparently were introduced by the sentiment analysis
performed by S-HAN, which misses some sentiment terms like “not
safe”, “is broken”, etc., due to the incompleteness of our training set.
Effectiveness of IA dereference. The effectiveness of the IA
dereference was evaluated on 𝐷𝑣𝑐 . The results are shown in Table 2,
where the columns “API” and “Parameter” present the results for
API dereference and parameter dereference respectively. Each kind
of dereference was evaluated based upon four metrics ACC, F1, FRP
and FNR. The API dereference analysis achieves an accuracy of 94%,
a F1 of 66%, a false positive rate of 4% and a false negative rate of
27% respectively, which are 89%, 51%, 12% and 9% for the parameter
dereference analysis.

For the IA dereference, both FNs and FPs were caused by the
incorrect tags generated by the shadow parsing. For example, in the

noun phrase (NP) “file descriptor BIOs”, “file” should be labeled as a
noun, but the tool we use (StandfordCoreNLP [38]) marks it as a
verb, causing the NP to be incorrectly dereferenced. False negatives
also occur when the similarity between a VP and the description of
its related API is low, due to the limitations of word embedding.

Also, Advance utilized the first sentence of an API’s description
as the functionality sentence (Section 3.3). To evaluate the effective-
ness of this design choice, we sampled 178 API descriptions and
found that the first sentences of 157 (88%) are indeed functionality
sentences. Also, we manually checked the 21 sentences wrongly
labeled. None of them leads to incorrect IA dereference.
Effectiveness of VC generation. The last internal component
we evaluated is verification code generation. To evaluate its effec-
tiveness, we checked whether the 420 IA-CD pairs in 𝐷𝑣𝑐 were
generated by our VC generation process, which yields an average
recall of 69% and false negative rate of 31% as shown in Table 2.

We further looked into such false negatives in our study, with
the following discoveries. Some FNs were introduced by rarely used
CDs whose VCSes do not exist in our system. In the other cases, we
found that some VCSes could not be handled by CodeQL. For exam-
ple, consider the statement “sqlite3_deserialize is only available if
SQLite is compiled with the SQLITE_ENABLE_DESERIALIZE option.”;
the CD “be compiled with” can be detected by our approach, but
cannot be converted to the VCS, since CodeQL cannot check how
the application is compiled. As another example, in the IA “A server
application must also call the SSL_CTX_set_tlsext_status_cb function
if it wants to be able to provide clients with OCSP Certificate Status
responses”, we have no idea whether indeed the developer intends
to do so and therefore cannot run CodeQL to check a program’s
compliance with the IA. Note that VC generation templates used in
our study are not narrow, as evidenced by the high coverage of our
approach (75% of all the CDs of IAs; see “CD-Cov” in Table 2).
Runtime performance. Running Advance on 39 applications as-
sociated with 5 libraries (1.47MB files), it took Advance 32.5 hours
to finish all the tasks including IA discovery, IA dereference and
VC generation. Among the three components, VC generation was
the most time-consuming one (31 hours/95%). IA discovery took
1.5 hours (3%) to preprocess data and training S-HAN. It only took
170 seconds to find IAs of 5 libraries. The rest 2% time is used for
IA dereference.

5.3 Comparison with the State-of-the-Art
In our research, we firstly compared the end-to-end performance of
Advance with that of static API misuse analyzers (e.g., APEx [30]
and APISAN [52]) and a dynamic fuzzer (e.g., AFL [2]). Then we
further compared the effectiveness of Advance’s individual com-
ponents against their counterparts in the state-of-the-art of other
document-based approaches. Note that to the best of our knowl-
edge, there is no end-to-end tool available for detecting API misuse
from unstructured library documents.
Comparison with other API misuse detectors. We ran two
state-of-the-art static API misuse detection tools (APISAN [52]
and APEx [30]) on 𝐷𝑎𝑝𝑝 , which reported 150,788 and 1,100 API
misuses, respectively. Given the huge number of cases, known high
false positive rates of these approaches [30, 52] and the difficulty
in validating even a sampled subset (due to the lack of ground

truth for the IA semantics inferred), we only cross-checked the
results against our ground-truth set 𝐷𝑎𝑝𝑖 and the 139 undisclosed
but manually-validated API misuses found by Advance. The results
are presented under “APISAN ” and “APEx” of Table 4 in Appendix.
From the table, we can see that only 15% and 2% API misuses that
Advance reports can also be found by APISAN and APEx, respec-
tively. Also, among the 66 misuse cases in 𝐷𝑎𝑝𝑖 , APISAN and APEx
only find 4 and 2, respectively, whereas Advance detects 54.

Also, when compared with the precision of APISAN and APEx,
as reported by the prior work [30, 52] (12% and 21.6%), Advance
achieves a much higher precision (90%, see Section 5.2). The reason
is that APISAN and APEx rely on program analysis to infer possible
IAs (invariants in API uses) for detecting API misuses, which is less
reliable and tends to miss legitimate IAs or introduce false ones.

Further, we compared Advance with the most popular dynamic
bug detector AFL [2]. In our research, we ran AFL on each applica-
tion in our dataset (except 1 vulnerable version of ntop, which is too
old (16 years ago) to compile). Following Klees et al [33], we set the
timeout to 24 hours, and also utilized the default settings to choose
initial seeds, i.e., choosing from AFL testcases4, or the test cases
provided by application themselves. From the result shown under
“AFL” of Table 4, we can see that AFL detects no API misuses. This
is because without the guidance of IAs, coverage-based fuzzers like
AFL can be hard to trigger the anomalous program behaviors caused
by API misuses and in some cases, they fundamentally cannot: for
example, those unrelated to memory errors, such as authentication
bypass, cannot be found by AFL.
Comparison with other IA discovery approaches. We com-
pared Advance’s IA discovery component with two state-of-the-
art document-based approaches, one using keywords [47] and the
other leveraging grammatical templates based upon shallow pars-
ing (called ALICS) [44] for detecting IAs. In our experiment, we
evaluated the approaches on 𝐷𝑖𝑎𝑑 under the settings described in
their papers [44, 47]. Figure 5 shows the experiment results in terms
of accuracy, F1, FPR and FNR. Our study shows that Advance sig-
nificantly outperforms both approaches, particularly in terms of
accuracy (e.g. 88% vs 44% for ALICS [44]) and F1 score. Also, the
false negative rate of Advance is lower.

We also compared our S-HAN with two most popular off-the-
shelf classifiers: Text-CNN [32] and RCNN [34]. We trained these
models on the training data in𝐷𝑖𝑎𝑑 . Figure 6 (a) shows the accuracy
of the three models (RCNN, Text-CNN, and S-HAN) on 𝐷𝑖𝑎𝑑 . We
can see that S-HAN has a much better accuracy, especially when
applied to different libraries. This is mainly because the attention
mechanism captures the sentiment words used by various develop-
ers in different documents.
Comparison with other VC generation approaches. For veri-
fication code generation, we compared our approach with three
popular tools tComment [48], Toradocu [27], and Jdoctor [22]. Since
these tools cannot automatically discover IAs from documents, we
utilized the annotated IAs in 𝐷𝑣𝑐 as their inputs, and evaluated
their effectiveness on 𝐷𝑣𝑐 . Figure 6 (b) illustrates the experiment
results, showing that Advance significantly outperforms all these
three tools. We observe that Advance incurs a much lower false
negative rate than others: these approaches can only handle the IAs
4All kinds of file types that are provided by AFL.

Figure 5: Comparison with other IA discovery approaches (Keywords and ALICS). (a) to (d) represent 4 comparison metrics
on 5 evaluated libraries.

Figure 6: (a) Comparing S-HAN accuracy with RCNN and
TextCNN models. (b) Comparing VC generation FNR of Ad-
vance with tComment, Teradocu and Jdoctor
with simple arithmetic operations and logic operations, whereas
Advance can address more complicated constraints with data flow,
control flow and complex context conditions.

5.4 Findings
Running Advance on the documentation of 5 popular libraries (i.e.,
OpenSSL, SQLite, libpcap, libdbus and libxml2) and 39 applications
integrating these libraries, our study uncovered 139 undisclosed
and 54 known API misuses (shown in Table 4 in Appendix). Among
them, 16 of the undisclosed API misuses have been confirmed by the
application developers [5–11]. Also 6 of the known API misuses has
been assigned with CVEs. When classifying them using the CWE
standard5, we observe a wide range of vulnerability types: memory
corruptions or misuse (e.g., double free (CWE-415), use after free
(CWE-416), improper resource shutdown or release (CWE-404)),
authentication errors (e.g., improper certificate validation (CWE-
295)), incorrect check of return value (CWE-253) and use of obsolete
function (CWE-477). Table 4 lists the security impact of 193 API
misuses reported by Advance. We can observe serious security
implications of these API misuses including information leakage,
code execution, system crash, etc. Interestingly, we observed misuse
associated with deprecated API, e.g., using the deprecated API
RAND_pseudo_bytes of OpenSSL will allow remote attackers to
defeat the system [12].

Taking a close look at the discovered IAs and the instances of
API misuses, we found that around 60% of the violated IAs are
post-conditions, such as “Ownership of the passed parameter tm is
not transferred by these functions, so it must be freed up after the call.”
and “if an error occurs, PKCS7_sign_add_signers returns NULL”.
A hypothesis is that the developer tends to be less careful about
the post-conditions once an API has been invoked. Also we found
that the IAs of post-conditions or context conditions usually carry
5CWE defines a list of common software and hardware security weaknesses.

more than one CD, due to their relatively complicated grammar
structures, while IAs of pre-conditions are usually simple and often
used to constrain the input-value range.

5.5 Case study
Atril [3] is a multi-page document viewer for EPS, DVI, DJVU, XPS,
PDF file format. When running Atril 1.24.0 (the latest release), Ad-
vance reported an API misuse associated with a NULL dereference
bug, which can cause a DOS attack. The bug information from
AddressSanitiezer is shown in Appendix Listing 5. The vulnerable
function epub_document_check_hits is presented in Listing 2.

1 guint epub_document_check_hits (..., EvPage *page ,...){
2 gchar *filepath = g_filename_from_uri ((gchar*)page ->

backend_page ,NULL ,NULL);
3 htmlDocPtr htmldoc = xmlParseFile(filepath);
4 + if (! htmldoc) error_handle ();
5 htmlNodePtr htmltag = xmlDocGetRootElement(htmldoc);
6 + if (! htmltag) error_handle ();
7 htmlNodePtr bodytag = htmltag ->xmlChildrenNode;
8 ...

Listing 2: An libxml2 API misuse in Atril.
Specifically, epub_document_check_hits is a function used to

count the number of target strings on a page when searching on
the epub format documents. On the line 3, htmldoc is assigned
with the return value of xmlParseFile(filepath). According to
the documentation, xmlParseFile returns NULL in some con-
dition (e.g., when filepath is non-existent) and thus htmldoc
needs to be checked in default which, however, has not been fol-
lowed by Atril. Note that no matter what arguments are passed
to g_filename_from_uri, filepath is NULL, if the file associated
with filepath does not exist, Further, Atril passes htmldoc to
xmlDocGetRootElement to obtain the root element of the html file.
Similar to xmlParseFile, xmlDocGetRootElement returns NULL
when there is no root element (e.g., when htmldoc is NULL). Hence,
htmltag also needs to be checked in default. The violation of
these two IAs in the document results in a NULL dereference
bug when dereferencing htmltag at line 7. To trigger this bug,
we set the filepath to be an non-existent path. After manually
analyzing the source code, we found that filepath is a file cre-
ated by Atril and it does not check whether the file related to
filepath exists when using. Thus, deleting the file related to
filepath after being created will trigger the bug. In summary,
this bug is caused by the unchecked return value of xmlParseFile
and xmlDocGetRootElement, which is required in the documents
in default. It can be triggered through deleting the file filepath
by another attack process.

Using Advance, we first discovered the IAs “xmlParseFile returns
the resulting document tree if the file was wellformed, NULL otherwise”
and “xmlDocGetRootElement returns the #xmlNodePtr for the root or
NULL” through S-HAN. Both of them only match the CD “return”,
whose VCS is shown in Listing 46 in Appendix. With only one
matched CD, that VCS becomes the corresponding VC as the input
of CodeQL to discover API misuse. In Listing 4, Line 1 imports
the CodeQL modules like Python. The grammars of Line 2-5 are
similar to database query language (e.g., MySQL). They query the
function invocation xmlDocGetRootElement that has not checked
the returned NULL value and then print the invocation location (i.e.,
API misuse location).

6 Discussion
With its higher precision than all existing approaches, still Advance
introduces false positives and misses some API misuses. These
problems mostly come from the limitations of the tools underlying
our implementation and unusual IA descriptions present in library
documentation. Specifically, CodeQL and the NLP tools (such as
StanfordNLP [38]) used in our prototype are imperfect, and their
accuracy affects the outcome of our analysis. For example, Cod-
eQL cannot effectively handle complicated data-flow analysis like
tracking tainted data across a structure, which leads to a report
of false API misuses (Section 5.2). Also, even state-of-the-art NLP
techniques cannot effectively handle grammatical errors and am-
biguous descriptions, which are widely present in real-world library
documentations.

In addition, our approach required an off-line, one-time effort to
translate popular CDs to VCS (Section 3.4). We acknowledge that
our current template-based approach fails to capture the CDs with
low frequency, such as “must be inside an array-typed value”, which
only appears once in the library libdbus, or the CD whose IA is hard
to comprehend and translate, e.g., “if it wants to be able to provide
clients with OCSP Certificate Status responses”. One possible direction
to further automate this step is to customize existing automatic
programming techniques [28, 39] to construct the VC for a rare CD
based upon its smaller syntactic units such as “array-typed value”.
Also we found that there is similarity between some rare CDs and
popular ones, in terms of their semantics, which could allow us to
morph existing VCs for checking these CDs. Such directions will
be pursued in our follow-up research.

7 Related Work
Recent years have witnessed numerous studies leveraging text anal-
ysis techniques to automatically discover various kinds of bugs,
including access control misconfiguration, inappropriate permis-
sion request, logic flaws, etc. For example, Zimmeck et al. [55] check
the compliance between Android App and privacy requirement.
WHYPER [43] and AutoCog [45] investigate whether an Android
app properly indicates its permission usage in its app description.
Tan et al. [47] extract implicit program rules from comments, then
use these rules to automatically detect inconsistencies between
comments and source code. Goffi et al. [27] and Blasi et al. [22] gen-
erate the test oracle from documentation to dynamically find the
inconsistency between documentation and code implementation.
Zhong et al. [54] and Pandita et al [42] extract API call sequence
6The CodeQL grammars is shown in https://help.semmle.com/QL/learn-ql/.

information from the documentation to check the inconsistency.
Different from previous works, our research provides an end-to-end
approach to enable detection of security-critical API misuse from
real-world applications.

Considering the approach to discover IAs, previous works mainly
utilized the approaches based on keywords [47] or template match-
ing [44]. For instance, Tan et al. [47] utilize a series of pre-defined
keywords, such as “should”, “must” and so on to extract IAs, which,
however, results in a relatively high false-negative rate. Pandita
et al. [44] and Chen et al. [23] define shallow parsing templates
such as “(VB) (.)? (PRN)?” or regex template such as “Check the
seller_id represents the supposed merchant.”, respectively, for IA ex-
traction. In contrast to previous works, in our research, we propose
a corpora-insensitive and an efficient IA discovery method based
on the bidirectional GRU model with attention.

Another set of studies close to our work is automatic API misuse
detection through static or dynamic program analysis. For example,
to uncover API specifications, Mithun et al. [21], Kang et al. [30] and
Li et al. [36] leverage manually crafted rules to statically find API
error-handling blocks (EHBs) which contains the error handling
code. Hoan et al. [41] collect the execution paths leading to API
calls and then derive potential preconditions for such invocations.
Yun et al. [52] generate the symbolic context with relaxed symbolic
execution and explore four common API context patterns based on
that symbolic context. Maria et al. [31] combine static exception
propagation analysis with automatic search-based test case gener-
ation to pinpoint crash-prone API misuses in client applications.
Considering dynamic analysis for API misuse detection, Wen et
al. [50] discover API misuse patterns via mutation analysis. Differ-
ent from Advance, these methods heavily rely on the code set to
infer IAs and utilize manually-crafted rules to capture API misuses,
so a low quality code set will cause misuse cases to fall through the
cracks.

8 Conclusion
In this paper, we present a new technique to automatically detect
API misuses in applications based on analysis of library documen-
tation. Leveraging recent progress in machine learning and NLP,
our approach utilizes sentiment analysis to discover the integra-
tion assumptions from documentations, tree mining to identify
commonly-used CDs and lexical and semantic analysis to resolve
implicit references. Running our prototype on the documentations
of five libraries and 39 real-world applications integrating these
libraries, Advance successfully detected 193 API misuses, with 139
never reported before, outperforming all existing approaches. This
study demonstrates that new advancement in intelligent technolo-
gies can indeed move security science forward, even on the hard
problems long been studied, like API misuse detection.

Acknowledgments
IIE authors are supported in part by Beijing Natural Science Foun-
dation (No.JQ18011), NSFC U1836211, National Top-notch Youth
Talents Program of China, Youth Innovation Promotion Associa-
tion CAS, Beijing Nova Program, National Frontier Science and
Technology Innovation Project (No. YJKYYQ20170070), and Beijing
Academy of Artificial Intelligence (BAAI).

References
[1] 2016. stanfordParser. https://nlp.stanford.edu/software/dependencies_manual.

pdf. (2016).
[2] 2020. AFL fuzzer. https://lcamtuf.coredump.cx/afl/. (2020).
[3] 2020. Atril for MATE. https://mate-desktop.org/. (2020).
[4] 2020. CodeQL. https://securitylab.github.com/tools/codeql. (2020).
[5] 2020. confirmed bug. https://gitlab.gnome.org/GNOME/anjuta/-/issues/12.

(2020).
[6] 2020. confirmed bug. https://gitlab.kitware.com/vtk/vtk/issues/17818. (2020).
[7] 2020. confirmed bug. https://bz.apache.org/bugzilla/show_bug.cgi?id=64264.

(2020).
[8] 2020. confirmed bug. https://github.com/hughsie/colord/issues/110. (2020).
[9] 2020. confirmed bug. https://github.com/darktable-org/darktable/issues/6051.

(2020).
[10] 2020. confirmed bug. https://github.com/mate-desktop/atril/issues/485. (2020).
[11] 2020. confirmed bug. https://gitlab.gnome.org/GNOME/at-spi2-core/-/issues/24.

(2020).
[12] 2020. CVE-2015-8867. https://nvd.nist.gov/vuln/detail/CVE-2015-8867. (2020).
[13] 2020. github. https://github.com/. (2020).
[14] 2020. gitlab. https://about.gitlab.com/. (2020).
[15] 2020. Google translation. https://translate.google.cn. (2020).
[16] 2020. lxml. https://lxml.de/. (2020).
[17] 2020. man3. https://linux.die.net/man/3/. (2020).
[18] 2020. National Vulnerability Datase. https://nvd.nist.gov/vuln/search. (2020).
[19] 2020. sourceforge. https://sourceforge.net/. (2020).
[20] 2020. ubuntu. https://packages.ubuntu.com/en/xenial/libs/. (2020).
[21] Mithun Acharya and Tao Xie. 2009. Mining API error-handling specifications

from source code. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 370–384.

[22] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, 242–253.

[23] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai Chen, and Wei
Zou. 2019. Devils in the guidance: predicting logic vulnerabilities in payment syn-
dication services through automated documentation analysis. In 28th {USENIX}
Security Symposium ({USENIX} Security 19). 747–764.

[24] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Y. Bengio. 2014. Em-
pirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
(12 2014).

[25] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. 2018. Understanding
Back-Translation at Scale. (08 2018).

[26] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi,
Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A Deep Semantic Natural Language Processing Platform.
arXiv:arXiv:1803.07640

[27] Alberto Goffi, Alessandra Gorla, Michael D Ernst, and Mauro Pezzè. 2016. Au-
tomatic generation of oracles for exceptional behaviors. In Proceedings of the
25th International Symposium on Software Testing and Analysis. 213–224.

[28] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119.

[29] huggingface. 2020. neuralcoref. https://github.com/huggingface/neuralcoref.
(2020).

[30] Yuan Kang, Baishakhi Ray, and Suman Jana. 2016. APEx: Automated Inference
of Error Specifications for C APIs. In 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE). Singapore.

[31] Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and
Arie van Deursen. 2019. Effective and efficient API misuse detection via exception
propagation and search-based testing. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 192–203.

[32] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[33] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[34] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional
neural networks for text classification. In Twenty-ninth AAAI conference on
artificial intelligence.

[35] Chi Li, Zuxing Gu, Min Zhou, JiechengWu, Jiarui Zhang, and Ming Gu. 2019. API
Misuse Detection in C Programs: Practice on SSL APIs. International Journal of
Software Engineering and Knowledge Engineering 29, 11&12 (2019), 1761–1779.
https://doi.org/10.1142/S0218194019400205

[36] Chi Li, Min Zhou, Zuxing Gu, Ming Gu, and Hongyu Zhang. 2019. Ares: inferring
error specifications through static analysis. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1174–1177.

[37] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. In
Proceedings of the 10th European Software Engineering Conference held jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, Michel Wermelinger
and Harald C. Gall (Eds.). ACM, 306–315. https://doi.org/10.1145/1081706.1081755

[38] Lynten. 2018. stanfordcorenlp. https://github.com/Lynten/stanford-corenlp.
(2018).

[39] AfsanehMahanipour andHossein Nezamabadi-Pour. 2019. GSP: an automatic pro-
gramming technique with gravitational search algorithm. Applied Intelligence
49, 4 (2019), 1502–1516.

[40] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[41] Hoan Anh Nguyen, Robert Dyer, Tien N Nguyen, and Hridesh Rajan. 2014.
Mining preconditions of APIs in large-scale code corpus. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 166–177.

[42] Rahul Pandita, Kunal Taneja, Laurie A. Williams, and Teresa Tung. 2016. ICON:
Inferring Temporal Constraints from Natural Language API Descriptions. 2016
IEEE International Conference on SoftwareMaintenance and Evolution (ICSME)
(2016), 378–388.

[43] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications. In 22nd
USENIX Security Symposium (USENIX Security 13). USENIX Association, Wash-
ington, D.C., 527–542. https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/pandita

[44] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring method specifications from natural language API
descriptions. In 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 815–825.

[45] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. 2014. Autocog: Measuring the description-to-permission fidelity in
android applications. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. 1354–1365.

[46] Fei Sha and Fernando Pereira. 2003. Shallow Parsing with Conditional Random
Fields. In Proceedings of the 2003 Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics.
213–220. https://www.aclweb.org/anthology/N03-1028

[47] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In ACM SIGOPS Operating Systems Review, Vol. 41.
ACM, 145–158.

[48] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @ tcomment:
Testing javadoc comments to detect comment-code inconsistencies. In 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation.
IEEE, 260–269.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (Eds.). Curran Associates, Inc., 5998–6008. http://papers.nips.cc/paper/7181-
attention-is-all-you-need.pdf

[50] MingWen, Yepang Liu, RongxinWu, Xuan Xie, Shing-Chi Cheung, and Zhendong
Su. 2019. Exposing library API misuses via mutation analysis. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 866–877.

[51] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
2016. Hierarchical attention networks for document classification. In Proceedings
of the 2016 conference of the North American chapter of the association for
computational linguistics: human language technologies. 1480–1489.

[52] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISan: Sanitizing API Usages through Semantic Cross-Checking. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 363–
378. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/yun

[53] Mohammed Javeed Zaki. 2005. Efficiently mining frequent trees in a forest: Algo-
rithms and applications. IEEE transactions on knowledge and data engineering
17, 8 (2005), 1021–1035.

[54] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource specifica-
tions from natural language API documentation. In 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 307–318.

[55] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman Sadeh, Steven M. Bellovin, and Joel Reidenberg.
2017. Automated Analysis of Privacy Requirements for Mobile Apps. Korea
Society of Internet Information, Korea, Republic of. https://doi.org/10.14722/
ndss.2017.23034

[56] Radim Řehůřek. 2019. gensim. https://radimrehurek.com/gensim/. (2019).

9 Appendix

https://nlp.stanford.edu/software/dependencies_manual.pdf
https://nlp.stanford.edu/software/dependencies_manual.pdf
https://lcamtuf.coredump.cx/afl/
https://mate-desktop.org/
https://securitylab.github.com/tools/codeql
https://gitlab.gnome.org/GNOME/anjuta/-/issues/12
https://gitlab.kitware.com/vtk/vtk/issues/17818
https://bz.apache.org/bugzilla/show_bug.cgi?id=64264
https://github.com/hughsie/colord/issues/110
https://github.com/darktable-org/darktable/issues/6051
https://github.com/mate-desktop/atril/issues/485
https://gitlab.gnome.org/GNOME/at-spi2-core/-/issues/24
https://nvd.nist.gov/vuln/detail/CVE-2015-8867
https://github.com/
https://about.gitlab.com/
https://translate.google.cn
https://lxml.de/
https://linux.die.net/man/3/
https://nvd.nist.gov/vuln/search
https://sourceforge.net/
https://packages.ubuntu.com/en/xenial/libs/
https://arxiv.org/abs/arXiv:1803.07640
https://github.com/huggingface/neuralcoref
https://doi.org/10.1142/S0218194019400205
https://doi.org/10.1145/1081706.1081755
https://github.com/Lynten/stanford-corenlp
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/pandita
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/pandita
https://www.aclweb.org/anthology/N03-1028
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://doi.org/10.14722/ndss.2017.23034
https://doi.org/10.14722/ndss.2017.23034
https://radimrehurek.com/gensim/

ℎ�

ℎ�

ℎ�

ℎ�

ℎ�

ℎ�

�� �� ��

softmax

�� �� ��

�

softmax

Attention

Encoder

�� �� ��

softmax softmax

MLP

……

……

……

……

……

Figure 7: Bidirectional GRU model with Attention

Algorithm 1 Traverse the CD tree
Input: 𝐶𝐷_𝑡𝑟𝑒𝑒
Output: 𝑉𝐶
1: while 𝑔𝑒𝑡_𝑛𝑜𝑑𝑒𝑠 (𝐶𝐷_𝑡𝑟𝑒𝑒) > 2 do
2: 𝑙𝑒𝑎𝑓 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑙𝑒𝑎𝑓 (𝐶𝐷_𝑡𝑟𝑒𝑒)
3: 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 ← 𝑔𝑒𝑡_𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝑙𝑒𝑎𝑓)
4: 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑔𝑒𝑡_𝑝𝑎𝑟𝑒𝑛𝑡 (𝑙𝑒𝑎𝑓)
5: 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 ← 𝑔𝑒𝑛_𝑛𝑜𝑑𝑒 (𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠, 𝑙𝑒𝑎𝑓 , 𝑝𝑎𝑟𝑒𝑛𝑡)
6: 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐶𝐷_𝑡𝑟𝑒𝑒, 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒)
7: end while
8: 𝑉𝐶 ← 𝐶𝐷_𝑡𝑟𝑒𝑒.𝑟𝑜𝑜𝑡 ()

Table 3: Dependent tools and SLoC of each component in
Advance

Components Dependent tools SLoC
IA discovery Gensim, Stanford-NLP, Keras 3K
IA derefence Gensim, Stanford-NLP, NLTK 1K
VC generation Allennlp, CodeQL 1K

1 ptr = xmlGetProp (...);
2 list = g_list_append (list , ptr);
3 for (iter = g_list_first (list); iter != NULL; iter =

g_list_next (iter))
4 g_free (iter ->data);

Listing 3: An example of false positives

1 import cpp , nullCheck
2 from FunctionCall fc
3 where fc.getTarget ().hasName("xmlDocGetRootElement")
4 and not nullcheck(fc)
5 select fc.getLocation ()

Listing 4: Verification code

==167813== ERROR: AddressSanitizer: SEGV on unknown address 0
x000000000018 (pc 0x7f92a84b1b31 bp 0x7ffdba993ba0 sp 0
x7ffdba993b50 T0)

==167813== The signal is caused by a READ memory access.
==167813== Hint: address points to the zero page.
#0 0x7f92a84b1b30 in epub_document_check_hits /atril/backend/epub

/epub -document.c:186
#1 0x7f92fa1418a6 in ev_document_find_check_for_hits /atril/

libdocument/ev-document -find.c:59
#2 0x7f92fa085698 in ev_job_find_run /atril/libview/ev-jobs.c

:1378
#3 0x7f92fa07f7ef in ev_job_run /atril/libview/ev-jobs.c:192
#4 0x7f92fa087a86 in ev_job_idle /atril/libview/ev-job -scheduler.

c:199
#5 0x7f92f92e9dfd in g_main_context_dispatch (/lib/x86_64 -linux -

gnu/libglib -2.0.so.0+0 x4fdfd)
#6 0x7f92f92ea1af (/lib/x86_64 -linux -gnu/libglib -2.0.so.0+0

x501af)
#7 0x7f92f92ea23e in g_main_context_iteration (/lib/x86_64 -linux -

gnu/libglib -2.0.so.0+0 x5023e)
#8 0x7f92f94f624c in g_application_run (/lib/x86_64 -linux -gnu/

libgio -2.0.so.0+0 xd924c)
#9 0x556d3653a419 in main /atril/shell/main.c:287
#10 0x7f92f8f9abba in __libc_start_main ../csu/libc -start.c:308
#11 0x556d364e1349 in _start (/usr/local/bin/atril+0 x3a349)

SUMMARY: AddressSanitizer: SEGV /atril/backend/epub/epub -document.
c:186 in epub_document_check_hits

==167813== ABORTING

Listing 5: Sanitizer information of the case study.

Table 4: List of manually-validated API misuses reported by Advance, including 139 undisclosed (labeled with "*" in the
Column "Advance") and 54 disclosed API misuses.

Lib App SLoC API Misuse Impact Advance APISAN APEx AFL

libdbus

afterstep-devel 240 K missing dbus_free() after dbus_malloc() DoS 1* 0 0 0

at-spi2-core 22 K missing dbus_free() after dbus_message_iter_get_signature() DoS 1* 0 0 0
5 0 0 0

avahi 44 K deprecated dbus_message_iter_get_array_len() malfunction 1 0 0 0
BlueZ 191 K missing dbus_message_get_sender() check system crash 1 0 0 0

libpcap

arp-scan 5 K incorrect pcap_dispatch() check malfunction 1* 0 0 0
incorrect pcap_set_timeout() argument malfunction 1 0 0 0

arping 2 K incorrect pcap_dispatch() check malfunction 1 0 0 0

ettercap 75 K

deprecated pcap_lookupdev malfunction 5 0 0 0
incorrect pcap_dump() argument malfunction 2 0 0 0
incorrect pcap_setfilter() check malfunction 1* 0 0 0
missing pcap_freealldevs() after pcap_findalldevs() DoS 1* 0 0 0
missing pcap_lookupdev() check system crash 1 0 0

freeradius 147 K incorrect pcap_open_live() argument malfunction 1* 0 0 0
pcap_create() pcap_activate() not available malfunction 1 0 0 0

knock 2 K incorrect pcap_open_live() argument malfunction 1 0 0 0
libnet 24 K missing pcap_freealldevs() after pcap_findalldevs() DoS 1 0 0 0
ntop 6 M missing pcap_freealldevs() after pcap_findalldevs() DoS 1 0 0

tcpdump 96 K missing pcap_freealldevs() after pcap_findalldevs() DoS 2 0 0 0
using pcap_geterr() return value after pcap_close() system crash 1 0 0 0

tcpreplay 62 K incorrect pcap_open_live() argument malfunction 1* 0 0 0

wireshark 5 M
incorrect pcap_list_datalinks() check system crash 1 0 0 0
incorrect pcap_open_live() argument malfunction 2* 0 0 0
incorrect pcap_set_tstamp_type() check malfunction 1* 0 0 0

libxml2

abiword 541 K missing xmlFree() after xmlGetProp() DoS 2 0 0 0
missing xmlFree() after xmlNodeGetContent() DoS 4 0 0 0

anjuta 12 M

missing xmlDocGetRootElement() check system crash 5* 0 0 0
missing xmlFree() after xmlGetProp() DoS 9* 0 0 0
missing xmlFree() after xmlNodeGetContent() DoS 2* 0 0 0
missing xmlNodeGetContent() check system crash 2* 0 0 0

atril 94 K missing xmlDocGetRootElement() check system crash 5* 0 1 0
missing xmlFree() after xmlNodeGetContent() DoS 4* 0 0 0

vtk 4 M

missing xmlDocGetRootElement() check system crash 1* 0 0 0
missing xmlFree() after xmlGetNsProp() malfunction 2* 0 0 0
missing xmlFree() after xmlGetProp() DoS 8* 0 0 0
missing xmlFree() after xmlNodeGetContent() DoS 4* 3 0 0

OpenSSL

dovecot 401 K missing BIO_reset() check malfunction 1 0 0 0
missing EVP_PKEY_CTX_new() check malfunction 1 1 1 0

httpd 422 K missing X509_free() after SSL_get_peer_certificate() Privacy leakage 2* 2 0 0
mutt 113 K X509_get_notBefore() and X509_get_notAfter() derepcated malfunction 6 0 0 0

ntp 214 K incorrect EVP_Verifyinal() check authentication bypass 1 0 0 0
incorrect RSA_private_derypt() argument code execution 1 0 0 0

openfortivpn 6 K incorrect X509_check_host() check authentication bypass 1 0 0 0

openvpn 90 K freeing SSL_get_certificate() return value system crash 1 0 0 0
incorrect ASN1_STRING_to_UTF8() check DoS 3 0 0 0

ovs 483 K missing X509_free() after SSL_get_peer_certificate() DoS 1 1 0 0
PHP 1 M deprecated RAND_pseudo_bytes() cryptographic issues 1 0 0 0
SPICE 190 K incorrect RSA_private_decrypt() argument code execution 1 0 1 0
unbound 88 K missing EVP_PKEY_assign_RSA() check malfunction 1 0 0 0

SQLite

anope 332 K missing sqlite3_close() after sqlite3_open_v2() Dos 1 0 0 0
missing sqlite3_finalize() after sqlite3_open_v2() DoS 1 1 0 0

bibledit-gtk-old 110 K missing sqlite3_close() after sqlite3_open() information leakage 3* 2 0 0
missing sqlite3_free() after sqlite3_exec() Dos/malfunction 45* 17 0 0

cmtk 334 K missing sqlite3_finalize() after sqlite3_prepare_v2() information leakage 2* 0 0 0
colord 110 K missing sqlite3_free() after sqlite3_exec() Dos 2* 0 0 0

darktable 385 K
calling sqlite3_config() after sqlite3_initialize() malfunction 1 0 0 0
missing sqlite3_finalize() after sqlite3_prepare_v2() information leakage 8* 0 0 0
missing sqlite3_free() after sqlite3_exec() Dos 1* 0 0 0

librdf 2 M missing sqlite3_free after sqlite3_exec() DoS 1 1 0 0
libspatialite 616 K missing sqlite3_free_table() after sqlite3_get_table() DoS 24* 0 0 0

All / 36 M / / 193 28 3 0

Table 5: Known API misuse dataset (𝐷𝑎𝑝𝑖)

Applications Libraries Version Misuses IA

at-spi2-core libdbus 925201d 5 The returned string must be freed with dbus_free().
avahi libdbus 28eb71a 1 This function is deprecated on the grounds that it is stupid.
BlueZ libdbus d3ae2d6 1 dbus_message_get_sender returns the unique name of the sender or NULL

arp-scan libpcap f013b45 1 We recommend always setting the timeout to a non-zero value unless immediate mode is set,
in which case the timeout has no effect.

arping libpcap b37fb24 1

pcap_dispatch() returns the number of packets processed on success; this can be 0 if no pack-
ets were read from a live capture or if no more packets are available in a savefile. It returns
PCAP_ERROR if an error occurs or PCAP_ERROR_BREAK if the loop terminated due to a call
to pcap_breakloop() before any packets were processed.

ettercap libpcap 89b5542 5 This interface is obsoleted by pcap_findalldevs.

ettercap libpcap dfcabfc 2 If called directly, the user parameter is of type pcap_dumper_t as returned by
pcap_dump_open().

ettercap libpcap 891a281 1 If there is an error, or if pcap_init() has been called, NULL is returned and errbuf is filled in
with an appropriate error message.

freeradius libpcap 57fbb95 1 pcap_create() and pcap_activate() were not available in versions of libpcap prior to 1.0
knock libpcap 4b8ad4d 1 you should use a non-zero timeout

libnet libpcap 008c994 1 The list of devices must be freed with pcap_freealldevs(), which frees the list pointed to by
alldevs.

ntop libpcap 66f6f48 1 The list of devices must be freed with pcap_freealldevs(), which frees the list pointed to by
alldevs.

tcpdump libpcap 39be365 1 you must use or copy the string before closing the pcap_t.

tcpdump libpcap 224b073 2 The list of devices must be freed with pcap_freealldevs(), which frees the list pointed to by
alldevs.

wireshark libpcap 51a99ca 1
pcap_list_datalinks() returns the number of link-layer header types in the array on success,
PCAP_ERROR_NOT_ACTIVATED if called on a capture handle that has been created but not
activated, and PCAP_ERROR on other errors.

anope SQLite 2a5e782 1 resources associated with the database connection handle should be released by passing it to
sqlite3_close() when it is no longer required.

anope SQLite aeefe16 1 The calling procedure is responsible for deleting the compiled SQL statement using
sqlite3_finalize() after it has finished with it

darktable SQLite 70820b1 1 The sqlite3_config() interface may only be invoked prior to library initialization using
sqlite3_initialize() or after shutdown by sqlite3_shutdown().

librdf SQLite 5d074c1 1
To avoid memory leaks, the application should invoke sqlite3_free() on error message strings
returned through the 5th parameter of sqlite3_exec() after the error message string is no longer
needed.

abiword libxml2 80fee4c 2 It’s up to the caller to free the memory with xmlFree().
abiword libxml2 ebcc445 4 It’s up to the caller to free the memory with xmlFree().

dovecot OpenSSL 0eaf77d 1 EVP_PKEY_CTX_new(), EVP_PKEY_CTX_new_id(), EVP_PKEY_CTX_dup() returns either
the newly allocated EVP_PKEY_CTX structure or NULL if an error occurred.

dovecot OpenSSL 394391e 1 BIO_reset() normally returns 1 for success and 0 or -1 for failure.
mutt OpenSSL 101e05d6 6 X509_get_notBefore() and X509_get_notAfter() were deprecated in OpenSSL 1.1.0
ntp OpenSSL 2383333 1 to must point to RSA_size(rsa) bytes of memory.

ntp OpenSSL c70fc4b 1 EVP_VerifyFinal() returns 1 for a correct signature, 0 for failure and -1 if some other error
occurred.

openfortivpn OpenSSL 07946c1 1 The functions return 1 for a successful match, 0 for a failed match and -1 for an internal error:
typically a memory allocation failure or an ASN.1 decoding error.

openvpn OpenSSL f755c99 1 They returned internal pointers that must not be freed by the application program.
openvpn OpenSSL 0007b2d 3 The length of ASN1_STRING_to_UTF8_APIParam_1 is returned or a negative error code

ovs OpenSSL 9da8b2f 1 The X509 object must be explicitly freed using X509_free().
PHP OpenSSL 7a4584d 1 RAND_pseudo_bytes() was deprecated in OpenSSL 1.1.0
SPICE OpenSSL ef9a8bf 1 to must point to RSA_size(rsa) bytes of memory.

unbound OpenSSL ffed368 1
EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH(), EVP_PKEY_a
ssign_EC_KEY(), EVP_PKEY_assign_POLY1305() and EVP_PKEY_assign_SIPHASH() return 1
for success and 0 for failure.

Total / / 66 /

	Abstract
	1 Introduction
	2 Background
	2.1 API Misuse
	2.2 NLP primitives

	3 Advance: Design
	3.1 Overview
	3.2 IA Discovery
	3.3 IA Dereference
	3.4 Verification Code Generation

	4 Implementation
	5 Evaluation
	5.1 Experiment Setting
	5.2 Effectiveness
	5.3 Comparison with the State-of-the-Art
	5.4 Findings
	5.5 Case study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	9 Appendix

