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Abstract
Recently Adversarial Examples (AEs) that deceive deep learning
models have been a topic of intense research interest. Compared
with the AEs in the digital space, the physical adversarial attack
is considered as a more severe threat to the applications like face
recognition in authentication, objection detection in autonomous
driving cars, etc. In particular, deceiving the object detectors practi-
cally, is more challenging since the relative position between the
object and the detector may keep changing. Existing works attack-
ing object detectors are still very limited in various scenarios, e.g.,
varying distance and angles, etc.

In this paper, we presented systematic solutions to build robust
and practical AEs against real world object detectors. Particularly,
for Hiding Attack (HA), we proposed the feature-interference rein-
forcement (FIR) method and the enhanced realistic constraints gener-
ation (ERG) to enhance robustness, and for Appearing Attack (AA),
we proposed the nested-AE, which combines two AEs together to
attack object detectors in both long and short distance. We also
designed diverse styles of AEs to make AAmore surreptitious. Eval-
uation results show that our AEs can attack the state-of-the-art
real-time object detectors (i.e., YOLO V3 and faster-RCNN) at the
success rate up to 92.4% with varying distance from 1m to 25m and
angles from −60◦ to 60◦1. Our AEs are also demonstrated to be
highly transferable, capable of attacking another three state-of-the-
art black-box models with high success rate.

CCS Concepts
• Computing methodologies → Object recognition ; • Secu-
rity and privacy → Software security engineering.
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1 Introduction
Object detection deals with recognizing instances of semantic ob-
jects from images or video clips, which has been widely applied
in many areas including face detection, object tracking, and safety
critical tasks such as autonomous driving and intelligent video
surveillance. Especially in autonomous driving systems, object de-
tectors are widely adopted to undertake the perception tasks such as
recognizing traffic signs, pedestrians, cars, traffic lights, traffic lanes,
etc. However, the last few years have seen the security concerns
over object detectors, because DNNs are known to be vulnerable
to adversarial examples (AEs). AEs are well-crafted malicious in-
puts that can deceive DNNs into making wrong predictions. Early
researches mainly focus on studying adversarial examples against
the image classifiers in the digital space only, i.e., computing the
perturbations, adding them back to the original image, and feeding
them directly into classification systems. Recently, Tom et al. has
shown that the AEs against the image classifiers are also possible
in the physical world by taking pictures of them and feeding the
pictures into the classifier[8].

Compared to the image classifiers, the object detectors are more
challenging to attack as the AEs need to mislead not only the label
predictions but also the object existence prediction (whether there
is an object). More importantly, unlike classifiers always working
on stationary images, object detectors are commonly applied in
an environment where the relative position between the objects
and the object detectors may keep changing due to the relative
motion of both, e.g., the object detectors on the fast-moving au-
tonomous driving vehicles or walking pedestrians under the intel-
ligence surveillance systems. On one hand, such relative motion
between the objects and the object detectors makes the distance
and viewing angle between them change dynamically. On the other
hand, the moving objects may cause the surrounding illuminations
and/or environmental background to change almost all the time.
Both of them will significantly impact the effectiveness of practical
AEs, thus demanding more robust AEs against the object detectors.

Until very recently, there are a few studies attacking object de-
tectors in the physical space, e.g., [15] [10]. Their main approach
to improving the robustness of the generated perturbations is to

https://doi.org/10.1145/3319535.3354259


extend the image transformations (e.g., change the size of AEs to
simulate different distances [8]). However, due to the capability of
the approach, the distances and angles are very limited, e.g., at most
12 meters and 15◦ in [10] (More detailed discussion and comparison
are presented later in Section § 4.2). Actually, the object detectors
on an autonomous driving vehicle may be able to recognize the
traffic lights at the distance about 20m2, and traffic signs at the road-
side over the angles of 30◦. So practically attacking object detectors
requires the AEs be effective at the longer distance and wider angle.
Moreover, these studies are also limited in exploring the impact
of illuminations and background on the AEs against object detec-
tors. In real world situations, to deceive an intelligent surveillance
camera, the moving AEs should continue being effective in various
scenarios, e.g., from sunshine to shadow, or from driveway to grass,
etc. Unfortunately, to the best of our knowledge, existing adversar-
ial attacks are still far away from robustly deceiving the real world
object detectors.

In this paper, we aim to generate robust AEs to attack the state-
of-the-art object detectors used in the real world, especially with
the long distances, wide angles and various real scenarios. To better
demonstrate the improvement over existing studies (e.g., [15]), we
consider two existing types of AEs: Hiding Attack (HA), which
makes the object detector fail to recognize the object, andAppearing
Attack (AA), which makes the object detector mis-recognize the AE
as the desire object specified by the attacker. We propose several
novel techniques to enhance the robustness of the attack.

Particularly, for HA,we propose two novel techniques to improve
robustness: Feature-interference reinforcement (FIR) and Enhanced
realistic constraints generation (ERG). Rather than optimizing the
final prediction layer of DNN, FIR enforces the generated AEs to
impact both hidden layers and the final layer. In this way, the
features of the target object that attackers want to hide are revised
by our AEs at the “early” stage in the process of classification, which
is shown to bemore robust against the changes of physical scenarios.
Based on the observation that the object detectors “remember”
the background of an object (they are trained using the images
containing both the object and the background where the object
usually appears.), ERG generates AEs using a series of “reasonable”
backgrounds in an automatic way. We leverage the semantics of
the object to search for the reasonable backgrounds on the Internet,
and synthesize the object and its transformations (e.g., different
sizes and/or angles) together with the reasonable backgrounds.
In this way, our AEs are more robust against various real world
backgrounds.

For AA, we propose nested-AE, which decouples the task of the
varying-distance attack into two pieces: the long distance attack
and the short distance attack, and produces two separate AEs ac-
cordingly. The two AEs are then assembled in a nested fashion to
build a single AE, with one AE targeting the long distance attack
and the other one targeting the short distance attack. Finally, we
also implement diverse styles of AEs to make them more surrepti-
tious, and the batch-variation to accelerate the convergence during
the generation of AEs.

2According to the stopping distance table provided on Queensland Government web-
site [3], the braking distance of a car at the speed of 60km/h on a dry road is 20m.

We evaluated the AEs generated by our solutions against multi-
ple state-of-the-art object detectors in different physical environ-
ments systematically3. They can attack YOLO V3 [33] and Faster
RCNN [34], with the success rate over 60% and 78% respectively
in different outdoor environments. Furthermore, they are robust
enough to different distances (from 1m to 25m), shooting angles
(from −60◦ to 60◦), backgrounds (various scenarios both indoor and
outdoor) and illuminations (cloudy day and sunny day), simultane-
ously. Compared to previous state-of-the-art studies, the attack dis-
tance increases 52% and the angle increase 75%. We also measured
the transferability of the AEs on other black-box models including
SSD (Single Shot Detector) [27], RFCN (Region based Fully Convo-
lutional Network) [11] and Mask RCNN [20]. The success rate is
up to 90% and 72% for indoors and outdoors, respectively. These
results indicate that it is feasible to design robust AEs against real
world object detectors, which can be a real threat to autonomous
driving cars, intelligent surveillance cameras, etc.

Contributions. Our contributions are outlined as follows:
• New techniques for generating robust AEs against object detectors.
We proposed feature-interference reinforcement and Enhanced real-
istic constraints generation. Such techniques leverage manipulation
on the hidden layers in DNN and the semantics of the target object,
enabling practical adversarial attacks against object detectors with
the varying shooting distances and angles, different backgrounds
and illumination in the real world.
• Nested AE. We design a new kind of AE, which contains two
AEs inside, with each targeting a sub-task of the attack (i.e., the
long distance attack and the short distance attack). The two AEs
are produced accordingly and then assembled in a nested fashion
to build a single AE. Such nested AEs significantly improve the
robustness of adversarial attack at the various distances.
•We evaluated our AEs generated against multiple state-of-the-art
object detectors in different physical environments systematically.
Results show that they are robust enough to different distances
(from 1m to 25m), shooting angles (from −60◦ to 60◦), backgrounds
and illuminations, simultaneously. Furthermore, our AEs are shown
to be highly transferable to other four black-box models.

2 Background
In this section, we first overview the existing object detectors, espe-
cially the breakthrough in this field due to deep learning. Then we
summarize the physical adversarial attacks against image classifiers
that are closely related to our attack and the limitations of existing
adversarial attacks against the object detectors.

2.1 Object Detection
Great progress has been made in recent years on object detection
due to convolutional neural networks (CNNs) [16, 31, 36]. Modern
object detectors based on deep learning methods can be classified
into two categories: two-stage strategy detectors such as Faster
RCNN [34], RCNN [17], SPPNet [21], Fast RCNN [16], RFCN [11],
Mask RCNN [20], Light Head RCNN [24], etc., and one-stage detec-
tors including DetectorNet [46], OverFeat [36], YOLO [31], YOLO

3We have contacted the developers of all the object detectors that we successfully
attacked in this paper, and are waiting for their responses.



Figure 1: ARealWorld Example of Hiding Attack (Stop Sign)
Against the Object Detector on an Autonomous Driving Car.

V2 and YOLO 9000 [32], SSD [27], YOLO V3 [33], etc. Below, we
detail YOLO V3 and Faster RCNN from the above two categories
respectively.

For YOLO, a one-stage region-based framework, class probabili-
ties and bounding box offsets are predicted directly with a single
feed forward CNN network. This architecture leads to a faster
processing speed. Due to such excellent efficiency and high-level
accuracy, YOLO is a good choice in real-time processing systems,
such as the traffic light detection module in Apollo [4] (an open
platform for autonomous driving), and the object detection mod-
ule in satellite imagery [13]. Compared with V1 and V2, YOLO V3
improves a lot in the detection of tiny and overlaid objects, which
is important for autonomous driving that always needs to detect
traffic signs far away at its braking distance.

Faster RCNN, a two-stage detection framework, includes a pre-
processing step for region proposals and a category-specific classi-
fication step to determine the category labels of the proposals [34].
Faster RCNN is proposed to improve the RCNN, which is quite
computationally expensive in spite of high object detection ac-
curacy [26]. Instead of using the time-consuming selective search
algorithm on the feature map to identify the region proposals, Faster
RCNN uses a separate network to make the region proposals. Hence
Faster RCNN is much faster than its predecessors and can even be
used for real-time object detection.

2.2 Physical Adversarial Examples
Many researches have explored the adversarial attacks against the
image classifiers. In the early works, AEs are studied only in the
digital space, but now the physical adversarial attack against deep
learning models attracts more attention. For example, in the work
of the physical attack against face detection presented in [37], the
authors printed sun glasses that are capable of deceiving the state-
of-the-art face recognition system. Tom et al. presented a method to
create adversarial image patches that could be printed and attached
to the target to fool image classifiers [8]. Ivan et al. proposed similar
attacks on road signs to deceive image classifiers [14]. These works
raised serious safety and security concerns especially for the safety-
critical systems.

Successfully attacking one or a few frames in a video stream (us-
ing the techniques to fool image classifiers as above) is not enough

Figure 2: The Proposed Solutions to Generate Robust AEs
(Top: Hiding Attack; bottom: Appearing Attack)

for object detectors. In contrast, practical adversarial attacks against
object detectors should keep adversarial samples work on most,
if not all, of the frames. Lu et al. [28] demonstrated that physical
adversarial samples against image classifiers cannot transfer to
object detectors (i.e., YOLO and Faster RCNN) in standard configu-
ration. The recent studies [10, 15] generated AEs against the object
detector under some physical conditions. However, these works
are limited in the aspects of the longer distance, multiple angles,
various illuminations, etc.

3 Attack Approach
Building robust AEs against the object detectors in the real world is
non-trivial considering the relative motion between objects and de-
tectors, varying environments, etc. Figure 1 illustrates a real world
example of an adversarial attack (HA of a stop sign) against the
object detector on a running autonomous driving car. The distances
and angles between the car and the AE (the stop sign) keep chang-
ing as the car moves towards the AE. Hence, at different positions,
e.g., A, B, C, and D as shown in the figure, the perturbations in
the AE captured by the object detector demonstrate different sizes,
shapes, reflection of light, etc. Such relative motion between the ob-
ject and the detector imposes the requirement of highly robust AEs,
which although being static themselves, should tolerate reasonable
changes in terms of size, shape, illumination, etc.

To generate robust and practical AEs, we proposed a suite of
solutions for Hiding Attack (HA) and Appearing Attack (AA) re-
spectively. As shown in Figure 2, for HA, we proposed feature-
interference reinforcement ( FIR, Section § 3.1) and Enhanced realis-
tic constraints generation (ERG, Section § 3.2); for AA, we propose
nested-AE (Section § 3.3). Finally, we presented the style-customized
AEs (Section § 3.4) to make them more surreptitious and the batch-
variation (Section § 3.5) to accelerate the convergence during the
generation of AEs.

ThreatModel. In this paper, we focus on the white-box adversarial
attack, which means we need to access the target model (including
its structure and parameters). Meanwhile, we also did some prelimi-
nary experiments on the black-box adversarial attack by measuring



Figure 3: Feature Interference Reinforcement (Using Stop
Sign as an Example).

the transferability of our AEs, where we assume we do not know
any details of the target black-box models.

3.1 Feature-interference Reinforcement
To generate AEs, most of the existing studies design an objective
function or a loss function to minimize the difference between the
deep learning model’s prediction value and the expected value.
Since object detectors extract the high-dimensional features of the
object and give predictions based on those extracted features, AEs
can be enhanced by perturbing the original object’s features “earlier”
in the hidden layers (i.e., before the output layer). Thus, in this paper,
besides misleading the prediction results, our loss function is also
designed to make the AEs be able to perturb the object’s features
at the hidden layers of the model. Such perturbation prevents the
original features of the object from transferring to the later layers
especially the final layer, thus further misleading the prediction
results.

Figure 3 shows an example using a stop sign as the attack target
to illustrate the high-level idea of feature interference attack (). The
two DNN models are identical from the same object detector. Let
Qn denote the DNN hidden layer’s feature map from the target
object in the input image x (on the right) and Q ′

n the feature map
from the object in the input image x ′ (on the left). Both of the two
input images have the same background, the same stop sign of the
same size, the perspective angle and the light condition. The only
difference is that the adversarial perturbation is added on the stop
sign in x ′.

In Step 1○, both images x and x ′ are provided as inputs into
DNN model and the corresponding neurons in the hidden layers
are activated. Then in Step 2○, we extract the feature map Qn
and Q ′

n from the same hidden layer in an automatic way (We will
elaborate the selection of the hidden layers in the last paragraph
of this Section.). The full feature map of the hidden layer is the
feature map of the whole input image. Since we only care about the
features of the target object, which is the stop sign in this example,
we extract a small feature map that is most related to the stop sign
based on its relative coordinates in the input image. Such extraction
is possible because the hidden layers of the object detectors are
composed of convolution layers, which preserve the geometric
features of the input image. We set the coordinates of two points

of the square region of the stop sign in the input image: the top left
point (x ,y) and the bottom right point(x ′,y′). Then the coordinates
of the small feature map (related to the stop sign) in the full feature
map can be calculated as λ · (x ,y) and λ · (x ′,y′) respectively, where
λ is the ratio of the width of the full feature map and that of the
input image.

In Step 3○, we poolQn andQ ′

n to form the feature vectors v and
v ′. We extract one feature value from each feature map, using the
mean pooling. For example, we get a group of feature maps of the
stop sign from one hidden layer with the size of 3*3*256, which
means there are 256 convolution kernels in this layer. Usually, each
kernel filters one kind of typical feature. Therefore, we get a 3*3
feature map from each filter in Step 2○ and then pool it to one
single value. With the mean pooling, we get the vector with the
size of 256. Then we normalize it and get the feature vector v for
the input image x ( v ′ for the input image x ′ can be obtained in a
similar way.).

In Step 4○, we use the function lossf =
∑

|v −v ′ |2 to measure
the difference of features from the hidden layer. Finally, our loss
function is describe as follows:

α ·CboxN + β · pN (yN |S) + c · (lossf )
−1 (1)

Given an input, an object detector makes several most possible
predictions. Each prediction yN is represented in the form of <
CboxN ,pN >. N is the index of the prediction, which outputs the
result of the target object (e.g., the stop sign). S denotes the class
probabilities space.CboxN is the box confidence and pN is a vector of
probability distribution over all classes. In order to hide the predic-
tion of a particular object yN , eitherCboxN or the particular object’s
probability in pN should be less than the thresholds that control
whether the object can be detected. Furthermore, the difference of
hidden layer features lossf between the target object (to be hidden)
and the perturbed object should be maximized. Hence, our loss
function of HA is defined as in Equation 1, where α , β and c are the
parameters to adjust the weights4. Based on our evaluation, FIR is
demonstrated to be effective to enhance the robustness of AEs: it
contributes 7% in the increase of the distance and the angle.

To reduce the complexity of the object function, instead of all
hidden layers, we select a few hidden layers to optimize the third
item of Equation 1. Take YOLO V3 as an example. YOLO V3 network
architecture consists of the feature extraction part (the darknet
backbone) and the detection part. In order to extract features of
diverse scales, the hidden layers can be viewed as being divided
into groups, with each group extracting feature maps of different
sizes. Within each group however, the consecutive hidden layers
extract the feature maps of the same size. Therefore, focusing on the
feature extraction part of YOLO V3, we just choose the last hidden
layer from each group, i.e., one hidden layer for each different size.
For the optimization of the selected hidden layers, the former layers
usually impact the result more than the latter layers, no matter the
effect is positive or negative, since the gradients of the former layers
are typically larger. However, giving a significant weight to the
former layers may disturb the optimization of the other two items
in Equation 1. Therefore, we adjust the parameter c accordingly to
find an optimal solution.
4In the evaluation of this paper, α , β and c are 1, 1 and 0.1 respectively.



Figure 4: The Workflow of Enhanced Realistic Constraints Generation.

3.2 Enhanced Realistic Constraints Generation
In the prior studies, Expectation over Transformations (EOTs) are
applied to build an adversarial attack in the physical world. EOT is
to add random distortions in the optimization to make the pertur-
bation more robust, but simulating realistic situations with random
image transformations as in the existing works is not enough. The
reason is that we observed that object detectors have a certain
“knowledge” to the background of the object and the object seman-
tic. This “knowledge” make detectors be sensitive to the relationship
of the object and different background as well as the object semantic
integrity. More precisely, the former means whether the object is
in the reasonable environment and whether this object is in the
reasonable position, while the latter means whether the object ap-
pears to be in reasonable integrity. Experimental results about such
observation are shown in Section § 5.1.

We can leverage these sensitivities to expose the perturbations
that are not so robust in the optimization process and then optimize
them to make them more robust. For instance, for a stop sign with
adversarial perturbations, even if unrobust, the object detectors are
still likely to be able to recognize it correctly if the background
environment is outdoor and there is a pole equipped below the
stop sign. Then we can optimize it based on the gradients in the
backward propagation until it is robust enough. Hence, ERG is
proposed to generate more realistic constraints (reasonable back-
ground and reasonable object semantic integrity) in a systematic
way. Figure 4 illustrates ERG method using the stop sign as an
example. We find the necessary background using a search engine
(e.g., Google) using two approaches. The first one is to search the
target directly using the name (e.g., using the word “stop sign”).
Then the search engine will return the image of the target with a
real background. The second approach is to use the words related
to the semantic of the target (e.g., using the word “road”). Then the
search engine will return suitable images, but may be without the
target. We detail how to leverage the background search using two
different approaches.

For the background images containing the target (e.g., stop sign),
we leverage the original background to generate AEs, which makes
the generated image more realistic. Such AEs are shown to be
more robust. The basic idea is to extract the target object, perform
various transformations on the object and put it back to the original

image to replace the original target. Detailed steps are as follows.
We first utilize an object detector to get the coordinates of the
target object in the image, the size of its bounding box and the
(width,heiдht) of this bounding box. Then the approximate angle of
the original target in the image can be estimated using the formula:
arccos( width

heiдht ). Thirdly, we re-scale the perturbed target with the
size of the bounding box and apply the perspective transformation
method on it with the estimated angle. We also apply the random
gray-scale transformations to simulate the illumination changes.
Finally, we replace the original target with the transformed one in
the image by cutting out the area of the original target in the image
and adding the transformed one. The original target can be easily
identified, since we have got the coordinates and (width, height) of
it in the image with the object detector as mentioned above.

For the background images without the target, but with related
semantics, we first choose a position region where the target is
most likely to appear if it were in the image. Position region is set
as the rectangle area mostly near or in the region of the semantic-
related object in each image. Hence, we can get the region of the
semantic-related object of each image with the image semantic
segmentation tools and then set the position region of the target
based on the results and semantics [5]. As for the “stop sign”, the
semantic-related object is the road and then the position region of
the stop sign should be the rectangle area beside the road. After
locating the position region, we apply different transformations to
the target object, e.g., random size for re-scaling, random angle for
perspective transformation and random gray-scale. Finally, we add
the transformed target to the position region in the image for AE
generation. This approach may find out some images unrelated to
the target. Our idea is to double check the semantics of the searched
image by Google, and to verify whether the image is related to the
keyword in the searching.

Besides the realistic constraints generation, we also consider the
color saturation constraint to overcome the printer chromatic aber-
ration. As we know, printers are unable to reproduce the color of the
original digital image accurately. So in the real world, the generated
digital perturbations cannot be exactly the same way as they were
supposed to be. Neither can camera lens be able to capture the color
perfectly. Thus, the perturbations on the AEs captured by them
also lose fidelity before feeding them to the object detectors. Such



(a) Mesh grids in the short distance. (b) Mesh grids in the long distance.

Figure 5: Mesh Grids in the Short Distance View and the
Long Distance View.

chromatic aberration also introduces difficulties when attacking
the real world object detectors. Interestingly, we find that for the
images with low saturation, color printers can usually reproduce
them with less chromatic aberration. Therefore, we utilize color
saturation function to impose restrictions on the perturbation, that
is, for each pixel of the perturbation, we limit its color saturation
to be lower than a threshold. In this way, the generated AEs can
always be with low saturation, thus more suitable for printing.

3.3 Nested AEs
Inspired by the observation that an object “looks” smaller when
captured in long distance and bigger in short distance, recent object
detectors, such as YOLO v3, are designed to use more than one
scales (e.g., three scales for YOLO v3: big, medium, and small scale)
to measure the scope of the objects, thus improving the accuracy
of object detection, especially the small objects or the objects in
the long distance5. An object is considered to be detected as long
as the object detector model detects an object from any one of the
three scales. However, compared to the partial model that identifies
big or medium objects, the other part of the model detecting small
objects (referred to asModels ) is easier to be deceived since it relies
on fewer pixels in the video frame (also with few features) to detect
objects.

Based on the observation above, we always target Models in
different distances since it is easier to be deceived. In particular,
considering the AE in long distance as shown in the right of Figure 5,
the entire AE together only appears as a few number pixels in the
video frame, to attackModels . In contrast, to attackModels in short
distance as shown in the left of Figure 5, only the central area of the
AE takes effect. Such AE with the central area (for short distance
attack) integrated into the whole area (for long distance attack) is
named as nested AE in this paper. Note that, the central area and
the whole area of the nested AEs should not interfere with each
other. The formal design of nested AEs is as below:

Xadv
i+1 = Clip

{
Xi + εsiдn(J (Xi )), Sp ⩽ Sthres
Xi + εMcenter siдn(J (Xi )), Sp > Sthres

}
(2)

5This is also the reason why YOLO v3 performs much better than the previous versions
(e.g., YOLO v1 and v2) on detecting small objects or objects in the long distance.

where Xi is the origin AE generated with random noise, Xadv
i+1

denotes the modified AE, J (·) is the gradients of the input Xi , and
Clip(·) normalizes all elements in inputs into the range of [0, 255].
If the size of the AE (referred to as Sp ) is less than or equals to the
threshold Sthres , we regard it as a long distance attack and modify
the full AE. Otherwise, we view it as a short distance attack and
only modify the center of the AE. Overall, decoupling the task of
varying distance attack into two sub-tasks, long distance attack and
short distance attack, enables robust AE generation in the scenarios
of varying distance. With the help of nested AE, we achieved high
attack success rate at the distance from 6m to 25m in our evaluation.

Loss Function based on Nested AEs. In order to implement the
proposed nested AEs for Appearance Attack (AA), a loss function
should be designed to increase the probability of the target and
suppress the probabilities of other objects during the prediction
process. Different from image classifiers, object detectors need to
identify all the recognizable objects in every single video frame.
Thus, we should first locate the position where the AE appears, and
then design the loss function based on this position.

The object detectors divide each video frame into several differ-
entm × n grids based on the scales. Note that based on the design
principle discussed above, we only targetModels . Som and n are
fixed in the model (e.g.,m = 52 and n = 52 in YOLO v3). In Figure 5,
we use a mesh grid ofm = 13 and n = 13 as an example, to illustrate
the position of AE. From the figure, we find that the AE is in the box
with blue border. Then we could map the position to the prediction
results (usually expressed by tensors). The index of the tensor is
referred to as Np , which can be calculated based on the size of AE
Psize and the center position of AE Pposit ion . For instance, in the
left of Figure 5, Np of the grid where the center position of the
AE locates is 213. Note that in different frames of the video, the
position of the AE can change, e.g., in the right of Figure 5, so Np
changes to 291 accordingly. Hence, Np should be re-calculated for
each video frame.

Once Np is calculated, we define the loss function as follows:

Np = f (Psize , Pposit ion ),

1 −CboxNp
+ β

∑���pNp, j − yj

���2 (3)

where f (·) is the function to calculate Np . The loss function is
composed of two parts. The first part is 1−CboxNp

, whereCboxNp
is the

box confidence of the prediction at the index Np . The second part

β
∑ ���pNp, j − yj

���2 calculates the sum of the square of the differences
between the probabilities of other predictions (denoted by pNp, j )
and the target yj we set at the index Np . Hence, minimizing the
loss function will maximize the confidence of the target object at
Np , and meanwhile minimize the possibilities for other objects to
be detected.

3.4 Style-customized AEs
The prior work [15] customized the shape of the perturbations to
mimic vandalism (e.g., graffiti on stop sign), to make them surrepti-
tious. However, such unitary style may only work for limited sce-
narios. It is obvious that diverse styles providemore choices tomake
perturbations adapt to different attack environments, thus making



Figure 6: The Style-customized AEs

them more surreptitious. In this paper, we introduce diverse styles
to mimic the graffiti or advertisements, namely Pattern-controlled
AE, shape-controlled AE, color-controlled AE, and text-based AE
(via the combination of shape-controlled AE and color-controlled
AE). Note that the style-customized AEs are designed specifically
for HA in this paper, rather than AA. The AE of AA is a single
poster to be individually placed somewhere reasonable, unlike the
AE of HA, which is typically attached on the stop sign. The style-
customized AE can be added in the AE generation as a nice-to-have
option to make AE more surreptitious. In particular, shape-control
can be added with aMask matrix when modifying the AE, while
the pattern-control and color-control can be implemented through
their loss functions.

Pattern-controlledAE. Pattern control aims to generate AEs with
specified patterns such as a clock, a person or even a car. Figure 6
(a) gives an example of AE with a clock inside. We can leverage the
target object detector itself to generate the pattern in AE, because
the object detectors are trained using images of objects, so they
should contain the information of the objects that it has learned in
the training process. To implement the idea of recovering the object
from the model, we design a pattern control loss function, written
as:

∑ ��pj − 1
��2 , where j is the target class that we desire the pattern

to be, and pj is the probability of class j in each prediction we aim to
modify. Minimizing the loss function will improve the probability
of the target class, so the adversarial sample will be crafted to be
similar with the target class from the model’s perspective.

Shape-controlled AE. Shape control makes AE in a specific shape,
like a butterfly or the shape of love. Figure 6 (b) shows an example
of AE in the shape of Apple logo. In order to develop the irregular
shape, we create a mask to control the shape of AE. AssumeXadv +

P is the function to modify the adversarial samples where P is the
perturbation. We slightly change it to be Xadv + P ·Mask where
Mask is a matrix with the same dimension as Xadv , with all values
either 0 or 1. Hence all the elements with the value of 1 form the
shape as desired, and are allowed to be modified in the training
process. In this way, the generated AE will be in the specific shape.

Color-controlled AE.We can control the color used to build AEs.
Figure 6 (c) gives an example of AE with red hue. To generate such
style, the original AE needs to be colorful. Then we can adjust the
color of AE as needed through a loss function, defined as below:

losscolor =
∑

pixelϵXi

pixelR + pixelG + pixelB
pixelT

(4)

where PixelR , PixelG , PixelB are R (red), G (green) and B (blue)
values of each pixel and PixelT is the value of the target color. Since
each pixel of the image contains RGB with different weights, we

Table 1: The List of Objects attacked by HA and AA

Attack Objects
HA stop sign, car, monitor
AA stop sign, person, traffic light

can tune the weights of each pixel to generate an AE with a primary
color, e.g., assigning more weights on R than G and B in the AE
generation. In this way, the color hue can be controlled.

Text-based AE.We could further generate texts in AEs to mimic
small advertisements. Figure 6 (d) gives an example of AEwith letter
“A” inside.We combine shape-controlledAE and color-controlledAE
to implement the Text-based AE. Specifically, we create a mask with
letter-like shape (e.g., “A”, “B”, “C”) and control the color used in
the shape (i.e., tuning RGB in each pixel of the shape). For example,
we can use gray and white color in the shape, which are more
appropriate to display texts.

3.5 AE Generation with Various Constraints
Based on the loss functions, AEs can be generated by iteratively
modifying the perturbations with a small step ε on the direction
of gradient calculated. However, the number of constraints we
introduced so far may let the generation process converge very
slowly or even not converge. To solve the convergence problem,
we adopt the batch-variation method, which computes the aver-
age gradient of all N gradients. Each gradient is computed based
on the AE transformed through a specific variation, including the
enhanced realistic constraints, different re-scale parameters, per-
spective transformation angles, etc., to guide the modification of AE.
Using the average gradient instead of N variations can stabilize the
update directions and reduce the overfitting to limited realistic con-
straints. Reducing overfitting further decreases AEs’ dependence
on the model which is helpful to increase the transferability. Hence,
the batch-variation method increases the convergence speed or
improves the transferability of physical AEs to some extent. Based
on evaluation results, such an approach to generate AEs is 5× faster
than previous approaches to converge.

4 Evaluation
We implemented HA and AA for multiple objects, including stop
sign, car andmonitor in HA, and stop sign, person and traffic light in
AA, as shown in Table 1. Due to the space limit, we cannot present
evaluation results for all the objects in different physical conditions.
To ease the comparisonwith existingworks, we choose the stop sign
as an example in this section to elaborate the evaluation results of
both HA and AA in various physical conditions, since the other two
state-of-the-art physical attacks against detectors also evaluated
theirs approaches using the stop sign6. We recorded the attacks
against other objects and uploaded them on the demo website.

4.1 Experimental Setup
We evaluated AEs in three different kinds of environment settings,
indoor (lab) environment, outdoor environment and the real road.
6Stop sign is frequently used to evaluate the physical adversarial attack, because it is
considered to be highly related to the traffic safety (Practical adversarial attack against
stop sign can cause autonomous driving cars to malfunction.).



Figure 7: Success Rate at Different Angles, Distances, and Illuminations. (Left two figures: Hiding Attack; Right two figures:
Appearing Attack)

We purchased a real stop sign, as shown in Figure 11, for all the
related experiments. In HA, the generated AEs are printed using a
regular desktop printer, HP Color LaserJet Pro MFP M277dw. Then
we cut the stickers out of the printout and attach them to the surface
of the stop sign. For AA, we print the generated AE as a 60cm×60cm
poster to represent as our AE. We evaluate the effectiveness of AEs
in the physical space by shooting videos of the AEs, and running
object detectors on the video recordings. The cameras used to shoot
video are the built-in cameras of iPhone 6s and HUAWEI nova 3e.
The computer used to generate AEs is equipped with an Intel Xeon
E5-2620 CPU, a GTX Titan-X GPU and 32GB physical memory.

We evaluated the AEs using YOLO V3 and Faster RCNN, which
are the representative models of one-stage detectors and two-stage
detectors accordingly. The backbones of the pre-trained models
YOLO V3 and Faster RCNN are Darknet-53 and ResNet-101 respec-
tively. Both the two detectors are trained on Common Objects in
Context (COCO) dataset [1] [2]. We define the success rate of the
physical attack as fsucc = Nsucc/Nall × 100, where Nall denotes
the number of all the frames in a video and Nsucc denotes the
number of the frames in which our attack successfully fools the
object detector.

4.2 Effectiveness
We evaluated the AEs of HA and AA (generated based on YOLO V3)
against various factors including distance, angle, and illumination.
We recorded several pieces of video towards the AEs (the stop sign)
using an iPhone 6s and a HUAWEI nova 3e. To examine the impact
of varying distances and angles, we divided the distances 5m ∼25m
into five regions (each region is 5m), and recorded video in each
region (keep moving from Nm to N + 5m) at the angles 0◦, 30◦,
45◦, and 60◦ respectively. To evaluate the impact of illumination,
we repeated the above experiments under different illumination
conditions, e.g., at the same time from 1:00 pm to 3:00 pm on a sunny
day and a cloudy day respectively. Figure 7 shows the success rate
(marked in each corresponding region) of HA and AA on a cloudy
day and a sunny day at varying distances and angles. The depth of
the background color is used to represent different success rates,
i.e., the darker the color, the higher the success rate.

AEs of HA. The left two of Figure 7 demonstrate the success rate
of HA on a cloudy day and a sunny day, respectively. Generally, a

higher success rate is achieved at wide angles than narrow angles,
and at long distances than short distances. For example, the average
success rate for all the four angles is 89% in the range of 20m ∼25m,
which is larger than the average success rate of 70% in the range
of 10m ∼15m. The average success rate over the entire distance
range (5m ∼25m) at angle 60◦ is 83%, also larger than 60% at angle
0◦. HA at the wide angle performs as good as or even better than
at the narrow angle. We repeated the same experiments on Yolo
v3 with the original stop sign, and found that the capability of
detecting the stop sign of YOLO v3 does not decline significantly as
the angle increases, and even remain the same when close enough
(The success rates are shown in Table 7 in Appendix.). Hence, the
better performance of HA at wide angle largely results from our
approach, rather than the weaker capability of YOLO v3 at wide
angle. Furthermore, we observed that the success rate of HA drops
gradually as the distance gets shorter. The reason is the detection
capability of the detector increases as the distance becomes closer,
thus more difficult to be deceived.

AEs of AA. The right two of Figure 7 demonstrate the success
rate of AA on a cloudy day and a sunny day respectively. On the
cloudy day, AA achieves over 98% success rate at all angles within
5m ∼10m and over 70% success rate at 0◦ ∼ 45◦ within 10m ∼15m.
Moreover, it keeps a high success rate over 80% at 0◦ from 0m to
25m. In Figure 7, we can see that apparently the success rate of AA
is opposite to that of HA, indicated by the changes of the color. In
particular, AA performs better at the short distance and narrow
angle, while HA better at the long distance and wide angle. This
is because wide angle and long distance will affect the object’s
features (crafted by AA) captured by the detector. On the sunny
day, AA performs great at the distance 5m ∼15m and the angle
0◦ ∼ 45◦, because the printed AEs can be recorded much more clear
on the sunny day, which helps highlight the features of the AEs.
However, the success rate degrades rapidly as the distance over
15m, since the reflection will impact the success rate of AEs with
long distance.

Overall, AEs of HA demonstrate great robustness against dif-
ferent angles and illumination conditions. Meanwhile, with the
distance longer than 10m (For HA, it can be too late to stop when
the object detector on autonomous driving cars recognizes the stop



Table 2: Comparison with the State-of-the-Art Attacks

HA Distance Angle Perturbation Area Transferability

Our method ⩽ 25m ⩽ 60◦ 20% ∼ 25% Faster, YOLO, SSD, RFCN, Mask
ShapeShifter ⩽ 40′ (12m) ⩽ 15◦ Full stop image except "STOP" Unable

Eykholt’s method ⩽ 30′ (9m) − − − 20% ∼ 25%∗ Faster RCNN (18%)

AA Distance Angle Perturbation Area Transferability

Our method ⩽ 25m ⩽ 60◦ − − − Faster, YOLO, SSD, RFCN, Mask
ShapeShifter − − − − − − − − − − − −

Eykholt’s method ⩽ 10′ (3m) − − − − − − − − −

*20% ∼ 25%: We measured the perturbation area ratio based on the image of AE in paper [15] . *− − −: We did not get the data from their papers.

Figure 8: The Success Ratio with different Area Ratios (i.e.,
the Area of the AE to That of the Target Object)

sign as close as 10m.), AEs of HA can always achieve good suc-
cess rate. AEs of AA is shown to be robust towards angles up to
60◦ within the distance of 10m ( For AA, the control system of
the autonomous driving car may give a decision to immediately
slow down or brake when the perception system (e.g., the object
detector) detects a stop sign as close as 10m.).

Comparison with the State-of-the-art Attacks. We compared
our work with two state-of-the-art attacks against the object detec-
tors: ShapeShifter [10] and Eykholt’s method [15], and evaluated
the improvements introduced by our proposed approaches.

Table 2 shows the improvements of our work over the other two
state-of-the-art attacks. Overall, our AEs of both AA and HA get
the longest attacking distance up to 25m and the widest attacking
angle up to 60◦. ShapeShifter evaluated their AEs at a variety of
distances (5’ to 40’) by taking photos indoors. Their AEs’ largest
effective angle is 15◦ at the distance within 20’(6m) and 30◦ at
the distance within 10’ (3m), lack of transferability based on their
evaluation. Eykholt et. al. evaluated the disappearance attack within
30’(9m) and creation attack within 10’ (3m) both at the angle 0◦,
without measuring their attacks at other angles. Moreover, their
disappearance attack with the form of sticker could transfer to
Faster RCNN with the success rate of 18.9%. Our AEs of HA and AA
generated based on YOLO V3 or Faster RCNN can transfer to other
black-box models including SSD, RFCN and Mask RCNN with the
success rates up to 90% and 72% in the indoor environment and the
outdoor environment respectively. Details of evaluation results on
transferability of our AEs are in Section § 4.4.

The Perturbation Area. Intuitively, the ratio of the area of the AE
to that of the target object also affects the success rate of HA. The

success rate of AE increases as its area gets larger. ShapeShifter mod-
ified the full stop image except the “stop” characters. Our method
and Eykholt’s method only modified a relatively small region of
the stop sign as shown in Table 2.

To get an “ideal” perturbation area (by “ideal”, we mean just
large enough to provide good success rate, while remaining less
noticeable.), we generated AEs with different areas and tested them
in the digital space. The image of the stop sign partially covered
by AEs with different areas was applied with random image trans-
formations and added with random backgrounds. Then the success
rate of each AE is computed based on the average of 10,000 tests.
Figure 8 shows the success rate varying the ratio. We can observe
that the success rate reaches up to 90% when the ratio is around
20%, and almost keeps stable (around 97%) as the ratio is around
25%. Hence, we conclude that the “ideal” ratio of the AEs in this
paper should be in the range from 20% to 25%, which is used in all
the experiment in this paper.

4.3 Performance Improvement of Individual
Techniques

FIR. We demonstrate the performance improvement introduced
by FIR by comparing the success rate of AEs generated with and
without the reinforcement. For both with and without the reinforce-
ment, AEs are always generated with enhanced realistic constraints
generation from YOLO V3. We did not repeat all the experiments in
Section § 4.2. Instead, we set the angle at 0◦ and distance ranging
from 5m to 25m, to evaluate the success rate of AEs. The results
showed that FIR improves the average success rate of AEs from
53% to 60% for YOLO V3, which indicates a great improvement
of robustness against varying distances. Experimental results also
demonstrate steady improvement over varying angles.

ERG. We demonstrate the performance improvement introduced
by ERG by comparing the success rate of AEs generated with and
without the enhancement. For the latter (without enhancement),
we generated AEs by applying the transformations and background
randomly. We obtained AEs from both YOLO V3 and Faster RCNN,
with and without the enhancement. We did not repeat all the exper-
iments in Section § 4.2. Instead, we set the angel at 0◦ and distance
ranging from 5m to 25m, to evaluate the success rate of AEs. The
results showed that enhanced realistic constraints generation im-
proves the average success rate of AEs from 31 % to 53 % for YOLO
V3, and 43 % to 67 % for Faster RCNN, which indicates significant



Table 3: Transferability of AEs

White-box Model Black-box Model
Faster RCNN
/YOLO V3 SSD RFCN Mask RCNN

YOLO V3
(Hidding Attack)

Indoors (785)* 21 % 71.6 % 52.6 % 49.7 %
Outdoors (658) 10 % 46 % 19.2 % 9 %

YOLO V3
(Appearing Attack)

Indoors(919) 51.8% 0% 20% 2%
Outdoors (889) 48.2 % 8.4 % 47.4 % 56.2 %

Faster RCNN
(Hidding Attack)

Indoors (701) 98.7 % 90.7 % 91 % 85.7 %
Outdoors (839) 76.8 % 78 % 72 % 58 %

*(Num): Num is the number of all frames of the test video.

(a) (b)

(c) (d)

Figure 9: Interference values for different hidden layers of
DNN when attacked by AEs. (a) without FIR/ERG; (b) with
FIR; (c) with ERG; (d) with FIR/ERG.

improvement of robustness against varying distances. Experimental
results also demonstrate steady improvement over varying angles.

Further understanding by analyzingDNN. Besides understand-
ing the performance improvement of FIR and ERG from the view-
point of success rate, we further try to understand their impact on
DNN itself. Specifically, we analyze the impact of perturbation on
hidden convolutional layers to make sure that the AEs interfere
with the features of the original target in the hidden layer. The
more interference, the more robustness of AEs could be obtained.
To perform such analysis, we analyzed all 56 convolutional layers of
YOLO V3 before the first residual layer, and measured the inference
values variation to the hidden layer features caused by perturba-
tions in 150 iterations of adversarial modification. The interference
value for a hidden layer is defined as lossf /N . lossf measures the
difference of features in the layer (see § 3.1), and N is the number
of convolution kernels in the layer.

Figure 9 (a) shows the interference values for the DNN when
attacked by the AEs generated without FIR and EDG. The x-axis
shows the number of iterations and y-axis shows different hidden
layers. Each value in the figure shows the interference value at
a specific layer when attacked by an AE generated in a specific
number of iterations. The red value means a large interference value

which shows the impact of AE is high; while a blue value shows a
small interference value. From this figure, we can see that the latter
layers (i.e., the layer close to the output layer) are impacted more
than the previous layers (i.e., the layer close to the input layer).
With the number of iterations increases, more hidden layers are
impacted. Figure 9 (b) and (c) shows the interference values for
the DNN when attacked by the AEs generated with FIR and EDG,
respectively. Figure 9 (d) shows the interference values when both
FIR and EDG are involved in the generation of AEs. By comparing
the three figures with (a), we can see that for the same number of
iterations, more hidden layers are impacted. This might explain the
high robustness of the AEs generated through FIR and ERG.

4.4 Transferability
To evaluate the transferability of AEs, we fed our video clips recorded
in the above experiments to some black-box models provided in
Tensorflow detection model zoo. The black-box models include one-
stage detectors such as SSD and two-stage detectors such as RFCN
and Mask RCNN7. We measured all video clips with the threshold8
of 0.5, which is the default value in the Tensorflow Object Detection
API. Because SSD is known to have a poor performance in detecting
small objects (Based on our testing, the longest distance over which
SSD can detect the original stop sign is 15m), we fed the truncated
video clips to SSD, in which the farthest shooting distance is about
12.5m.

Transferability of AEs based on Faster RCNN. We used the
two video clips containing HA, recorded indoors and outdoors re-
spectively, and fed them to the other four black-box models. As
shown in Table 3, AEs of Faster RCNN show quite good transfer-
ability performance on both the one-stage and two-stage black-box
models. The video recorded in the indoor environment obtains high
success rates over 90% in almost all black-box models. While in the
outdoor environment, the highest success rates range from 58% to
78%. Given the results above, AEs based on Faster RCNN demon-
strate high transferability to black-box models even against varying
angles, long distances and different experimental environments.

Transferability of AEs based on YOLO V3. The experiments
about AEs of YOLO V3 include HA and AA. For HA attack, the
transferability of AEs based on YOLO V3 is lower than that of
Faster RCNN. The performances between indoors and outdoors
7Pre-trained black-box models are downloaded on the website:
https://github.com/tensorflow/models/blob/master/research/object_detection
/g3doc/detection_model_zoo.md
8Typically the detector will give N predictions. If the probability of the target in one
prediction is lower than the threshold of 0.5, then this prediction will be filtered out.



Table 4: Success Rate of the Style-customized AEs

Style-customized AEs Hiding attack Appearing attackPattern Shape Text Color

YOLO V3
Indoors fsucc 92.4 % (784) 99.5 % (803) 99.4 % (716) 97 % (986) 88 % (1894)

maxt (f 100succ ) 99 % 100 % 100 % 99 % 99 %
Outdoors fsucc 53 % (963) 76.5 % (613) 65 % (604) 30 % (738) 91.7 % (1788)

maxt (f 100succ ) 93 % 99 % 94 % 81 % 99 %

Faster RCNN
Indoors fsucc 83.6 % (885) 89 % (784) 86.2 % (802) 28 % (696) − − −

maxt (f 100succ ) 100% 100% 100% 68% − − −

Outdoors fsucc 78.1 % (717) 87.8 % (614) 79.6 % (766) 31.2 % (715) − − −

maxt (f 100succ ) 99% 99 % 99% 70% − − −

*maxt (f 100succ ): The best success rate/100 frames at the distance over 10m . *fsucc : Success rate of total frames. *(Num): The number of total frames of this video.

for YOLO V3 also diverge significantly. For example, in the indoor
environment, the success rates of AEs are mostly over 50%, but
for the outdoor environment, the success rates are mostly below
20%. For AA, AEs perform better than HA. The success rates in
outdoor environments achieve 48.2%, 47.4% and 56.2% on Faster
RCNN, RFCN and Mask RCNN respectively. It is interesting that
the transferability of AA and HA are opposite on the same black-
box model, i.e., the transferability to Mask RCNN in the outdoor
environment with the success rate 9% for HA and the success rate
56.2% for AA. Such results could be explained by the detectors’
sensitivity to the stop sign. For instance, Mask RCNN was trained
to be very sensitive to the stop sign, so hiding will be more difficult,
but “making up” is relatively easier.

4.5 Effects of Style-customized AEs
We evaluated four different styles AEs against YOLO V3 and Faster
RCNN respectively. We record the object with AEs attached, begin-
ning from 25m away and ending at about 1m away, while keeping
the camera facing to the stop sign during the whole recording (The
frame rate is 30 frames per second). As shown in Table 4, four dif-
ferent style-customized AEs include : pattern-controlled AE with
the rectangle shapes and the specified patterns such as the clock
for YOLO V3 and the person for Faster RCNN, shape-controlled AE
with various shapes such as the butterfly and Apple logo, text-based
AE with English letters and color-controlled AE with the specified
color hue based on the semantics of the target to be hidden. For
example, to hide a stop sign, we need to choose the red color hue,
since it is similar to the background color of a stop sign, which
makes the adversarial patches more surreptitious. Since a captured
video usually lasts very long (e.g., several minutes), to perform
a fine-grained measurement, we also define the success rate for
every 100 consecutive frames f 100succ (the frame rate is 30 frames per
second). Hence, f 100succ can be a good indicator to see within every
3.3 seconds, whether we have accumulated enough success (the
number of successfully-attacked frames) to fool the object detector
making wrong decisions.

As shown in Table 4, all AEs against two target models have good
performances indoors, withmaxt (f

100
succ ) (max(f 100succ ) of the whole

video duration time t ) always over 99% and fsucc mostly over 90%.
For outdoor environments, except the AEs of color-controlled AE,
YOLO V3 gets fsucc over 50% and maxt (f

100
succ ) over 93% respec-

tively, while Faster RCNN gets fsucc over 80% and maxt (f
100
succ )

over 99%. However, AEs of color-controlled AE against both YOLO
V3 and Faster RCNN achieve only about 30% success rate in the

Table 5: Success Rate in the Real-road Driving Tests

Success rate Straight road Crossroad

HA(6km/h) 75% 64%
AA(6km/h) 63% 81%
HA (30km/h) 72% 60%
AA (30km/h) 76% 78%

outdoor environment. The possible reason is the style of red color
hue is originally too similar to the background color of the stop
sign.

Overall, style-customized AEs can achieve a good performance in
the physical attack against both YOLO V3 and Faster RCNN. Based
on our experience, the area of AE has a greater impact than the
shape on its success rate. However, making a larger AE is definitely
easier to be noticed.

4.6 Real-road Driving Test
To simulate the scenario of an object detector working on an au-
tonomous driving car, we mounted the smartphone HUAWEI nova
3e on top of the glove compartment inside the car, recording the
AEs while the car is running at different speeds. Such simulation
can evaluate our AEs against varying angles, distances, and speeds.
We did the experiment on a sunny day in two scenarios. In the
first scenario, we placed the stop sign with HA patches or the AA
poster (on a stick) on the right side of a straight road, as shown
in Figure 10 (a) and (c). Then the car started moving from 25 m
away, and passed by the stop sign or poster, at the speed of about
6km/h and 30km/h respectively. In the second scenario, the stop
sign with HA patches or the AA poster were placed on one corner
of the crossroad, as shown in Figure 10 (b) and (d). We started the
car from 25 meters away and made a left turn when passing the
crossroad. For both of the two scenarios, a passenger sitting in the
front of the car recorded the video towards the stop sign (i.e., AE).

Table 5 shows the success rates of both HA and AA in the sce-
narios of straight road and corner road are always above 60% and
even up to 81%. The success rates at the speed of 30km/h (similar
to the speed of the real local driving) indicate that our AEs could
potentially cause serious problems for autonomous driving cars.
During the real road driving test, we find that HA always performs
better at the long distance than at the short distance, while AA is
the opposite, which also align with the experimental results in § 4.2.
In terms of illumination effects, we find that the ideal situation is



Table 6: Success Rate of AEs (Indoors vs Outdoors, with pole vs without pole, Physical vs Digital)

Success Rate (fsucc )
Physical# Digital∗

Indoors Outdoors Indoors Outdoors

YOLO V3 With pole 92.4 % 53% / 31% 89 % 73 % / 53%
Without pole 100 % 76.6 % 97 % 87 %

Faster RCNN With pole 75.1 % 67 % / 43% 93 % 74 % / 63%
Without pole 91.1 % 81 % 99 % 94 %

#The average total frames of all videos in physical experiments is about 900 frames. ∗The number of test images in digital space is 10000. ∗Success rate / success rate*: Success rate* is the success rate of
AE generated with non-enhanced realistic simulation method.

with high illumination, but not direct shooting on the AEs, which
may cause heavy reflection and downgrade the performance.

4.7 Efficiency
We evaluated the time required to generate AEs. For each attack,
we performed the AE generation process ten times, and calculated
the average time. For both AA and HA, the number of iterations in
the generation process is 50,000. Without batch-variation, it took
two hours and thirty minutes to finish all the iterations for AA,
and two hour and fifty-five minutes for HA. After adopting batch-
variation, we only need to modify the AEs 500 times. Therefore,
the generation speed of AEs has been greatly improved. Specially,
it took thirty minutes for AA, and thirty-five minutes for HA. The
reason why HA takes a little longer than AA for both with and
without batch-variation is that the image transformation used in
HA introduces extra complexity. Overall, the generation efficiency
of the AEs is significantly improved by the batch-variation.

5 Discussion
5.1 Impact of Backgrounds and Object integrity
As mentioned previously, we guess the effectiveness of object de-
tectors is prone to be impacted by backgrounds and the integrity of
the target object (e.g., a stop sign with the pole). Here we want to
evaluate on this point. Particularly, we evaluated and analyzed the
sensitivities of object detectors to different backgrounds and the
object integrity in the digital space and physical world, respectively.
For evaluating the impact of background, we evaluated the AEs gen-
erated using the indoor background (unreasonable) and the outdoor
background (reasonable), respectively. Also, for object integrity, we
evaluated an AE targeting stop sign with a pole (reasonable) and
without a pole (unreasonable), respectively. The distance ranges
from 1m to 25m, while keeping the camera facing the stop sign
during the whole recording (The frame rate is 30 frames per sec-
ond). Results in both physical space and digital space are shown in
Table 6. Generally, AEs perform better in the digital space than in
the physical space as expected.

Background. As shown in Table 6, no matter the stop sign with
the pole installed or not, the success rate of AEs of Faster RCNN is
about 10% higher when indoors than that in outdoor background.
In the digital space, the success rate of AEs against stop sign is
19% higher with the indoor background than that with the outdoor
background. For YOLO V3, the differences are even more clear. The
success rate of AEs is 40% higher when indoors than that in out-
door background. These results demonstrate that in an outdoor

background environment, the stop sign is even harder to attack. For-
tunately, the stop sign is usually put outdoors. So the real situation
is outdoor, which we leverage to generate AEs.

Object integrity. For AEs of Faster RCNN, the success rate of the
stop sign without the pole is about 14% higher than that with the
pole in the physical space; and this number is 20% outdoors in the
digital space. For AEs of YOLO V3, the success rates of the stop sign
without pole are 7% and 23% higher than that with pole indoors and
outdoors, respectively, in the physical world. In the digital space, the
success rate of stop sign without a pole are 14% and 8% higher than
that with a pole outdoors and indoors, respectively. Apparently,
both YOLO V3 (one-stage detector) and Faster RCNN (two-stage
detector) are sensitive to object integrity. To make evaluations more
reliable, the stop sign is always installed with the pole in all the
experiments.

The experimental results show that the background and object
integrity are important for adversarial attacks. So to be more realis-
tic, we apply different backgrounds and keep the object integrity
when generating AEs, which also increases the robustness of the
generated AEs.

5.2 Impacts of Attacks against Real World
Object Detectors

Object detectors are becoming widely used in the areas of au-
tonomous driving, intelligent video surveillance and etc. Compro-
mising object detectors in a surreptitious way could incur a signif-
icant loss to people’s property and even life. First, deep-learning
based perception module is fundamental to enable autonomous
driving vehicles, providing crucial information about the driving
environment, e.g., traffic lights, traffic lanes, road signs, etc. The
object detector is one of the core units in the perception module,
relying on the input from the camera sensors [38]. If adversarial
example against the traffic sign can successfully deceive the object
detector, the perception module may present false information to
the control system of the car. Then the system would probably
make wrong decisions, which could result in traffic accidents9. Sec-
ond, Intelligent Surveillance System (ISS) is able to automatically
analyze the image, video, audio or other types of surveillance data
without or with limited human intervention. The adversary attack
against the object detector in ISS may cause it unable to identify
dangerous persons/objects or anything that needs to be monitored.
Such kind of detection failure due to attacks also poses great threats
to the safety of the people’s property and life.

9Although perception module also relies on information from other sensors like LIDAR,
RADAR, etc., to make decisions, they cannot present the semantics of the objects, e.g.,
stop sign, traffic lights, etc.



5.3 Potential Defense
To the best of our knowledge, there does not exist any general
defense mechanism for adversarial attacks against object detectors,
since researchers are still investigating the feasibility of such attacks
in the real world. Therefore, we study the defense mechanisms
of adversarial attacks against image classifiers, and discuss the
possibility of applying such defense solutions for object detectors.

The defense mechanisms we consider can be grouped into three
categories: (1) Modifying the inputs to disturb or even remove the
adversarial perturbations, e.g., JPEG compression [12], randomiza-
tion [41], median-filter [43], image re-scaling [19], etc. Furthermore,
Fangzhou et al. [25] proposed to train a guided denoiser to remove
the perturbations of AEs. However none of these pixel-based image
processing, transformation and denoising methods are very likely
to defeat our AEs. The reason is that our AEs are generated with
various transformations and random noise, thus those approaches
might not be able to disturb the perturbations in our AEs effec-
tively. The guided denoiser trained based on a large amount of AEs
(including ours) against object detectors is potentially an effective
defense solution. However, building the corpus of AEs is not an easy
task. (2) Improving the models such as the adversarial training [40],
defense distillation [30] and gradients obfuscation [6]. However,
such defense is limited to re-attack and transferable attack. We can
bypass it through transferability or generating new AEs against the
improved models. (3) Defeating AEs with GAN. A classifier can be
trained to distinguish whether the input is adversarial or not using
GAN [35]. However, such GAN needs to be trained based on our
AEs to defeat our attack.

6 Related work
Several existing works target at the adversarial attack against video
processing systems, especially the object detectors, in the digital
space. Xie et al. [42] extended adversarial examples to semantic
segmentation and object detection in the digital space. Lu et al. [28]
demonstrated their adversarial examples against Faster-RCNN and
YOLO generalize well across a sequences of digital images. When
testing their samples in the physical world, most of the AEs cannot
deceive the detectors even the AEs were poorly distorted against the
background. Moreover, the perturbations are quite large since they
modified the whole stop sign when generating AE. Yang et al. [44]
presented an interesting idea of creating a 3D mesh representation
to attack object detectors digitally, but the effectiveness of the
physical 3D adversarial objects are still unknown.

There are few existing works attacking object detectors in the
physical space. Shapeshifter [10] extended the EoT method [8] to
attack the Faster R-CNN object detector. Eykholt et al. proposed the
physical attack to YOLO V2 object detector [15]. Both of the two
works evaluated their AEs in some physical scenarios and worked
well as expected. Since they were designed without considering the
robustness against various physical conditions, those AEs are still
limited in varying distance, angles, etc. In contrast, we designed
more robust and practical AEs against the real world object detec-
tors, which demonstrate better performance at both longer distance
and wider angles.

There have been a lot of prior works [29] [9] [22] [45] on investi-
gating the vulnerability of deep neural networks against adversarial

examples. Szegedy et al [39] showed surreptitious adversarial ex-
amples can mislead the DNN-based image classifiers. Goodfellow et
al. [18] found that a large fraction of adversarial examples are clas-
sified incorrectly by ImageNet when perceived through the camera.
Kurakin et al. [23] demonstrated that the adversarial examples can
still be effective to classifiers when printed out. Athalye et al. [7]
implemented a 3D printed adversarial object, which can deceive
the neural networks at different orientations and scales. All these
researches focus on adversarial samples against image classifiers,
rather than object detectors.

7 Conclusion
In this paper, we presented a robust and practical adversarial attack
against the real world object detectors. In particular, we proposed
feature-interference reinforcement, enhanced realistic constraints
generation, nested AEs to improve the robustness of AEs in the
physical world against various factors, like varying distances, an-
gles, backgrounds, illumination, etc. The experimental results show
that our adversarial examples are robust in the real world envi-
ronments, capable of attacking the state-of-the-art real-time object
detectors, e.g., YOLO V3 and faster-RCNN, at the distance ranging
from 1m to 25m and angle ranging from −60◦ to 60◦. The real-road
tests, placing the object detectors in a car running at the speed
of 30km/h, achieve the success rate over 72%. Furthermore, the
evaluation results also demonstrate high transferability of our AEs
to other black box object detectors.
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Appendix

(a) (b) (c) (d)

Figure 10: Sample Frames of Real-road Driving Tests. (a) The hiding attack on a straight road. (b) The hiding attack on a
crossroad. (c) The appearing attack on a straight road. (d) The appearing attack on a crossroad.

(a) (b) (c) (d)

Figure 11: Sample Frames of Hiding Attacks and Appearing Attacks at Different Distances. (a) The hiding attack indoors. (b)
The hiding attack outdoors. (c) The appearing attack indoors. (d) The appearing attack outdoors.



(a) Hiding attacks at different angles (0◦ , 30◦ , 45◦ , 60◦).

(b) Appearing attacks at different angles (0◦ , 30◦ , 45◦ , 60◦).

Figure 12: Sample Frames of Hiding Attacks and Appearing Attacks at Multiple Angles.

Table 7: Success Rate of the Original Stop Sign on YOLO V3

Success rate(%) 5m ∼10m 10m ∼15m 15m ∼20m 20m ∼25m

0◦ 100 100 100 93
30◦ 100 100 100 84
45◦ 100 100 100 90
60◦ 100 98 93 72
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