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ABSTRACT
Besides traditional problems such as potential bugs, (smart-
phone) application clones on Android markets bring new
threats. That is, attackers clone the code from legitimate
Android applications, assemble it with malicious code or ad-
vertisements, and publish these “purpose-added” app clones
on the same or other markets for benefits. Three inherent
and unique characteristics make app clones difficult to detect
by existing techniques: a billion opcode problem caused by
cross-market publishing, gap between code clones and app
clones, and prevalent Type 2 and Type 3 clones.
Existing techniques achieve either accuracy or scalability,

but not both. To achieve both goals, we use a geometry
characteristic, called centroid, of dependency graphs to mea-
sure the similarity between methods (code fragments) in two
apps. Then we synthesize the method-level similarities and
draw a Y/N conclusion on app (core functionality) cloning.
The observed “centroid effect” and the inherent “monotonic-
ity” property enable our approach to achieve both high ac-
curacy and scalability. We implemented the app clone de-
tection system and evaluated it on five whole Android mar-
kets (including 150,145 apps, 203 million methods and 26
billion opcodes). It takes less than one hour to perform
cross-market app clone detection on the five markets after
generating centroids only once.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering

General Terms
Languages, Algorithms, Experimentation, Security
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1. INTRODUCTION
Code clones, or similar fragments of source code, bring un-

wanted problems such as inconsistencies [21], potential bugs
[38] and code smells [14]. Today, with the rapidly increasing
use of smartphones, code clones in smartphone applications
(apps for short) bring several kinds of new threats. Specially,
some attackers clone the code from legitimate Android apps
and pack/assemble it with “purpose-added” functionalities
or modifications after reverse-engineering those apps [43, 35].
This new kind of code clone is referred to as app clones or
repackaging [53]. After cloning an app, attackers would up-
load it to the same market (e.g., Google Play [16]) or other
markets.

App clones bring severe problems. (a) Smartphone mal-
ware prefers to use app clones as “carriers” for propagation.
Zhou et al. [54] found 1083 of 1260 (or 86.0%) malware sam-
ples are app clones with malicious payloads. (b) Legitimate
developers lost their advertising revenue and users to app
clones. According to a recent study [15], 14% of the adver-
tising revenue and 10% of the user base for a developer are
diverted to app clones on average.

1.1 Unique Characteristics of App Clones
App clones meet two essential criterions. (1) A large por-

tion of the core functionalities of one app are cloned in an-
other app. To separate app clones from shared libraries, we
do not view common frameworks and third-party libraries
as part of core functionalities. (2) App clones are developed
by different authors/companies. Based on the two criteri-
ons, we find that app clones on Android markets have the
following unique characteristics.

Characteristic 1: A billion opcode problem. Since two app
clones could appear on different markets, cross-market anal-
ysis is necessary. Given multiple markets, the app clone
detection problem is a billion opcode problem. Since most
developers do not release the source code, we use the number
of opcodes to measure the amount of code to analyze. An
opcode is a part of a bytecode statement, which determines
different kinds of VM operations. Hanna et al. [17] analyzed
30,000 apps from Google Play (the official Android market)
and found that the total number of opcodes in all apps is
approximately 1.45 billion.

Characteristic 2: Gap between code fragment clones and
app clones. Traditional clone detection is conducted in-
side a big software project (e.g., Apache) to identify similar
code fragments, not similar apps. In contrast, detecting app
clones needs to pairwisely compare apps in multiple markets.



A smartphone app is a set of code fragments. Although code
fragment clone detection is still very useful, two apps con-
taining code fragment clones are not necessarily app clones
due to two reasons. R1) The two apps could use common
third-party libraries. R2) Unless the core functionalities of
two apps are cloned, we cannot say that they are clones.

Characteristic 3: Type 2 and Type 3 clones are prevalent on
Android markets. Based on several studies [9, 53], many app
clones on Android markets are Type 2 and/or Type 3 clones
(The four types of clones are defined in the footnote1). In
contrast, traditional code clones are not always Type 2 and
Type 3. In fact, many traditional clones are Type 1. Type
4 clones rarely exist in app clones. This is mainly because
attackers usually do not bother to understand and perform
advanced transformation on the bytecode of legitimate apps.

1.2 Prior Work and Motivation
Although considerable research has been conducted on

clone detection, unfortunately, existing techniques are not
suitable for detecting app clones on Android Markets. We
compare these techniques in Table 1.
String-based [5], token-based [22, 28] and AST (Abstract

Syntax Tree)-based [7, 6, 20, 26] approaches have shown
their scalability to handle millions of lines of code. However,
they generate too many false negatives at handling Type 2
and/or Type 3 clones (Characteristic 3).
PDG (Program Dependence Graph)-based approaches [31,

13] capture the control flow and data dependencies between
the code statements inside code fragments. They can effec-
tively detect Type 2 and Type 3 clones. However, PDG
comparison by graph isomorphism analysis is not scalable,
which cannot handle billions of opcodes in multiple markets
(Characteristic 1).

Three recent studies try to handle this problem. Gabel et
al. reduce PDG comparisons to tree comparisons [13]. The
time complexity of this reduction is O(n3) (n is the num-
ber of nodes in a PDG). CBCD [27] uses four optimizations
for comparing two PDGs. Three of them assume that one
PDG is small. However, PDGs of methods in a smartphone
app could sometimes be very large. The fourth optimiza-
tion needs extra effort of splitting and merging, which still
raises the bar substantially for handling billions of opcodes.
AnDarwin [10] uses locality sensitive hashing (LSH) to find
similar connected components of PDGs. However, when a
single operation is added or removed, the LSH will change
(cannot keep it closer). Its false positive rate is 3.72% for full
app clone detection. For core functionality clone detection,
its false positive rate could be very high.
Hash-based approaches are efficient to detect code frag-

ments clones [53, 17]. However, they generate many false
negatives at handling Type 2 and Type 3 clones.
Kim et al. proposed a symbolic-based approach [23] to

capture semantically equivalent procedures. But simplifying
and comparing symbolic values are not scalable enough.
Motivation: In sum, string-based, token-based, AST-based

and hash-based approaches are not accurate for detecting

1
Roy et al. [39] define four types of clones. Type 1: Identical code

fragments except for variations in whitespace, layout and comments.
Type 2: Syntactically identical code fragments except for variations
in identifiers, literals, types in addition to Type 1’s variations. Type
3: Copied code fragments with further modifications such as changed,
added or removed statements in addition to Type 2’s variations. Type
4: Code fragments that perform the similar computation but imple-
mented through different syntactic variants.

Table 1: Comparison of Literature Work

Scalability† Accuracy

String ([5]) O(L) Not accurate for Type 2, 3 clones
Token ([22, 28]) O(L) Not accurate for Type 3 clones
AST ([7, 6, 20]) O(L) Not accurate for Type 3 clones

PDG ([31, 13, 9]) O(n2 · M2) Robust for Type 1, 2, 3 clones

PDG-Hash ([10]) O(NlogN)

Can handle Type 1, 2, 3 clones,
FPR=3.72% for full app clones.
For core functionality clones,
the FPR could be very high.

Hash ([53, 17]) O(M2) Not accurate for Type 1, 2, 3 clones
Symbolic-

O(s2 · M2)
Can handle Type 1, 2, 3 clones,

based ([23]) FPR > 10%
Centroid O(c · M) Accurate for Type 1, 2, 3 clones

†: Different implementations may have different time complexity. We show the
minimum one. L: the number of statements in all apps. M : the number of
methods in all apps. N : the number of apps. n: the number of PDG nodes. s:
the number of memory states. c: a small number (c << M . Based on our
evaluation, c ≈ 7.9). FPR: False Positive Rate.

app clones. PDG-based and symbolic-based approaches are
accurate, but not scalable enough for app clone detection.

Problem statements: How to achieve accuracy and
scalability simultaneously in detecting app clones on Android
markets?

1.3 Insights and Our Approach
Our approach is based on two insights.
Insight 1. If a graph-based approach can avoid graph

isomorphism analysis, then it could become both scalable (at
code fragment level) and accurate in handling Type 2 and
Type 3 clones. We found that a dependency graph could
be encoded in a particular way to avoid graph isomorphism
analysis while achieving the same clone detection goal.

Insight 2. To handle the billion opcode problem, code
fragments level scalability is necessary, but not enough. Scal-
able cross-market clone analysis requires scalable pairwise
comparison between all the methods (i.e., code fragments in
multiple markets). The complexity of this comparison is as
high as C2

M (M is the total number of methods). We found
that ideal complexity reduction is possible. Through such
reduction, we could reduce the complexity from O(C2

M ) to
the level of O(c ·M) (c << M).

Inspired by the insights, we develop a three-step approach
to detect app clones as follows.

Step 1: Geometry-characteristic-based encoding of depen-
dency graph. We develop a special encoding approach which
can accurately compare graphs without using isomorphism
analysis. Regarding Characteristic 3 of app clones, if part
of a PDG is sufficient to capture the Type-2 and Type-3
clones2, it is not necessary to encode the whole PDG. Based
on our observation, we found that we could encode the con-
trol flow graph (CFG) part of PDG. We further use a geom-
etry characteristic called centroid of CFG to encode a CFG.
By comparing centroids instead of the whole CFGs, we can
achieve high scalability. In most cases, the information loss
caused by encoding may bring inaccuracy. However, we are
very surprised to find that centroids, which are encoded us-
ing both CFG structures and opcodes, are still very accurate.
We refer to the surprising finding as the “centroid effect”.
This observed property of centroids make CFG comparison
both scalable and accurate.

Step 2: Localized global comparison. We found that cen-
troids have another special property denoted “monotonic-
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ity”. When a method changes a little, its centroid will not
change a lot. That is, a large difference between two cen-
troids shows that the corresponding methods are very un-
likely to be clones. “Monotonicity” can localize the cross-
market method comparison to a small number of methods,
which reduces the time complexity of pairwise comparison
from O(C2

M ) to O(c ·M).

Step 3: Core-functionality-based grouping. Different
from most of other works, we use an asymmetrical mech-
anism to group app clones. For two apps, as long as a large
portion of the core functionalities of App 1 are cloned to App
2, we assume that they are app clones no matter how many
core functionalities in App 2 are in App 1. This mechanism
could detect app clones that add lots of ads and libraries.

1.4 Main Contributions
In summary, we make the following contributions.

• To the best of our knowledge, this is the first work that
takes a centroid-based approach to clone detection.

• Accuracy: We observe the “centroid effect”. It has a
surprising “capability” to distinguish cloned methods.

• Scalability: We find the“monotonicity”property of cen-
troid. It enables us to achieve O(c·M) time complexity
for pairwise comparison.

• We designed and implemented the app clone detection
system.

• We evaluated our system on five Android markets. The
results demonstrate that our approach achieves high
accuracy and high scalability simultaneously.

2. OVERVIEW
We propose a new app clone detection approach that is

both accurate and scalable. Using this approach, we can de-
tect potentially app clones across different Android markets
in very short time.

2.1 A Motivating Example
We looked into the bytecode in app clones. Due to the

page limit, we only show one example. Figure 1 shows two
corresponding methods in two app clones. The apps have
different names and are deployed in different markets. The
only difference between the two methods is that one method
in Figure 1(a) adds a function call (marked with an arrow)
to initialize an object “touydig”. We viewed the code inside
“touydig” and found that it will start several ads.

2.2 Architecture
Motivated by the example in Figure 1, at a high level,

we use a bottom-up approach to detect app clones across
different Android markets. We compare different apps af-
ter performing 1-to-1 method-level comparisons in multiple
markets. Figure 2 shows the architecture of our approach.

Firstly, after preparation (including downloading all the
apps from multiple markets and extracting methods from
the apps), we encode a projection form of CFG (3D-CFG,
Subsection 3.1) to get the “centroid”geometry characteristic
of a CFG. This centroid could be viewed as the“mass”center
of a 3D-CFG.
Secondly, we measure method-to-method similarity using

centroids in multiple markets (Subsection 3.2). Leveraging

.class public Lcom/ladty/gjump/GStart;.

method public onCreate(Landroid/os/Bundle;)V

    invoke-super {p0, p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V

    invoke-static {p0}, Lcom/gamegod/touydig;->init(Landroid/content/Context;)V

    new-instance v0, Ljava/lang/Thread;

    ......

.end method

.class public Lcom/ladty/gjump/GStart;

.method public onCreate(Landroid/os/Bundle;)V

    invoke-super {p0, p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V

    new-instance v0, Ljava/lang/Thread;

    ......

.end method

(a) com.gamelin.gjump_17118600_0.apk (from the "Anzhi" market)

(b) jxty_1367648062215.apk (from the "Dangle" market)

Figure 1: Two corresponding methods in two app clones
are from different markets. The first method has one more
function call to initialize several ads.

the monotonicity of centroid-based comparison, we could re-
duce the complexity from O(C2

M ) to O(c · M) (M is the
number of methods in multiple markets and c << M).

Thirdly, we detect app clones by core-functionality-based
grouping based on the method-level comparison results (Sub-
section 3.3). Similar apps from the same authors/companies
or developed using the same frameworks/common third-party
libraries may not be real clones. We use Clone Groups (C-
Groups) to separate the real app clones from similar but not
cloned apps.

2.3 Two Properties of Centroid
The observed centroid effect and the inherent monotonic-

ity property make our approach unique. The centroid effect
makes method-to-method comparison accurate and scalable
in terms of method size. The monotonicity property makes
pairwise comparison in multiple markets scalable in terms
of the total number of methods.

Centroid effect. For any two methods in the Android mar-
ket, they can form a method pair (mp). A mp is either
cloned or not-cloned. The goal of method-level comparison
is to separate cloned pairs from not-cloned pairs. In other
words, the goal is to accurately “pick” cloned pairs out of the
whole set of mps. We find that centroids have an amazing
“capability” in doing this “picking” job. On one hand, if two
methods in a mp have the same centroid, this mp is almost
certain to be cloned. On the other hand, if two methods in a
mp have different centroids, the mp is 99% to be not-cloned
based on our experiments. This means maximally 1% of not-
cloned mps are missed. We refer to it as the“centroid effect”.
This surprising and intriguing “centroid effect” enables us to
achieve high accuracy without sacrificing scalability when
detecting cloned methods.

Monotonicity. Besides the “centroid effect”, we find that
centroid has another property “monotonicity” when solving
this problem, which gives us high scalability. When a method
changes a little, its centroid will not change a lot. This prop-
erty of centroid makes the similarity between two methods
monotonically correlate to the difference between two cen-
troids. Therefore, after we sort the methods in multiple
markets by their centroid values, we only need to compare
one method with its “equal class” in the sorted list. We do
not need to perform global comparison. Thus, monotonic-
ity enables us to decrease the time complexity of pairwise
comparison without sacrificing accuracy.

2.4 Can CFGs Detect App Clones?
PDG can effectively detect Type 2, Type 3 and Type 4

clones. However, in Android markets, Type 4 clones rarely



Figure 2: An architecture of our approach. After extracting methods from Android apps (APK files), we generate centroids for
those methods. Then we perform app clone detection on the basis of centroids.

exist in app clones. The main reason is that attackers usually
do not bother to understand and perform advanced transfor-
mations on the bytecode of legitimate apps. Type 2 clones
do not impact CFGs. Type 3 clones will still keep the main
structures of CFGs. Thus, it is possible to use CFGs to de-
tect clones on Android markets. Compared to PDGs, a clear
advantage of CFGs is that CFG-based method-level similar-
ity checking is by nature much simpler and more efficient.
CFGs contain much less information than PDGs.
When CFGs are used, one could be concerned with the

possibility of resulting in a high false positive rate. Different
methods may have the same CFG. Fortunately and surpris-
ingly, we find that the false positive rate could be brought
near to zero by combining the CFG structures and the in-
formation of opcodes.

2.5 Key Results
We fully implemented a prototype and systemically eval-

uated it on five real Android markets.

Accuracy: Our approach is very accurate at both method-
level and app-level.

Scalability: 1) For five Android markets (including 150,145
apps, 203 million methods and 26 billion opcodes), it takes
less than one hour to perform cross-market app clone de-
tection after generating centroids only once. 2) For a given
method, it takes less than 0.1 second to find the method
clones from the 203 million methods.

3. OUR APPROACH
We use a bottom-up approach to detect app clones. Based

on the results of 1-to-1 method-level comparisons, we com-
pare different apps and perform cross-market analysis.

3.1 Centroid of CFGs
We use a vector, called centroid, to digest a CFG. It is a

geometry characteristic of a CFG.

3.1.1 Physical Model and Challenge
CFG is the control flow graph of a method. Each node

in a CFG corresponds to a basic block in the method. A
basic block is a straight-line piece of code with one entry
point and one exit point. Jump targets start a block, and
jumps end a block. Directed edges are used to represent
jumps in the control flow. The code could be source code
like JAVA, assembling code like SMALI, machine code like
arm instructions or bytecode like DEX (Dalvik Executable).

Remark. (Physical model.) To digest and compare CFGs
with both high accuracy and high efficiency, we borrow the
ideas of centroid from physics. In physics, especially when
analyzing forces on a physical object, people usually use the
center of mass, or the centroid, to represent an object. It is

simple for force and motion analysis since people do not need
to consider the structure of the object. When two objects
are identical, their centroids are also the same. When the
structure of an object changes only a little, its centroid will
not vary a lot. Similarity, a CFG may also be viewed as an
object. Nodes in the CFG could be viewed as balls. Edges
in the CFG could be viewed as sticks. So the whole CFG
is very like an object with several balls connected by sticks.
Since a centroid can be used to stand for the object, it may
be possible to use the centroid to stand for the CFG.

Challenge. The concept of centroid cannot be perfectly
transferred from physics to method comparison. In physics,
the structure of an object does not change. So its centroid
is deterministic. But CFGs never count how long the edge
would be. Thus, strictly speaking, a CFG is an object with
several variable-position balls connected by variable-length
sticks. So its centroid is also variable, which makes it not
suitable for comparison.

Thus, we cannot directly extract the centroid from a CFG.
We need an intermediate form of representation. That is,
we need to project CFGs onto a 3-dimensional space. Then
the nodes would get coordinates, and the lengths of edges
would be determined automatically. This new type of CFG
is referred to as 3D-CFG.

3.1.2 3D-CFG
Android apps are written in Java, which is a kind of

structured programming. Sequence, selection (or branch)
and repetition are three basic structures of structured pro-
gramming [49]. We use these three basic structures to en-
code/transform a CFG to a 3D-CFG.

Definition 3.1 (3D-CFG) A 3D-CFG is a CFG in which
each node has a unique coordinate. The coordinate is a vec-
tor < x, y, z >. x is the sequence number in the CFG. y is
the number of outgoing edges of the node. z is the depth of
loop of the node.

This sequence number should make sure that the same
node in a CFG will always get the same x-coordinate. Then
we could get a 1-to-1 mapping between a CFG and a 3D-
CFG. We give each node a sequence number according to
the order in which it executes. The first node starts with
number 1. If a branch node has sequence number n, we give
n + 1 to the first node in the branch with more nodes. If
two branches have the same number of nodes, we give n+1
to the first node in the branch with more statements. If
the numbers of statements are also the same, we give n+ 1
to the first node in the branch whose first statement has
larger binary value. We continue to give sequence numbers
to the nodes in one branch until meeting the immediate post-
dominator of the branch. Then we go to the other branch
and continue to allocate sequence numbers until the last



Figure 3: A 3D-CFG example. Figure (a) is a CFG. We
add a stop node to the end of CFG (node F). Each node in the
CFG corresponds to a basic block in the method. Figure (b)
shows the 3D-CFG.

node of the CFG. We manually add a stop node to the end
of the CFG. “Return” statements will flow to the stop node.
In this way, every method has only one exit.
Example. Figure 3(a) shows the CFG and the 3D-CFG

of a real method. Node A in the CFG is the starting node.
Its sequence number is 1. It has only one outgoing edge and
it is not in any loop. So its coordinate is < 1, 1, 0 >. Node
B is the second node to execute in this method. It has two
outgoing edges and it is also in a loop. So its coordinate
is < 2, 2, 1 >. B is a branch node. Its immediate post-
dominator is node E. The branch starting with C has two
nodes. The other branch does not have any node. So the
sequence number of node C is 3. We add a stop node in the
end. Its coordinate is < 6, 0, 0 >.

3.1.3 Centroid Definition
Now we are ready to define the centroid of a 3D-CFG.

A 3D-CFG can be viewed as a set of nodes connected by
edges. It is similar to an object with several balls connected
by sticks in physics. Let’s assume the weight of the ball is
not zero and the weight of the stick is zero. We define the
centroid of a 3D-CFG.

Definition 3.2 (Centroid) A centroid c⃗ of 3D-CFG is

a vector < cx, cy, cz, ϖ >. cx =
∑

e(p,q)∈3D-CFG(ϖpxp+ϖqxq)

ϖ
,

cy =
∑

e(p,q)∈3D-CFG(ϖpyp+ϖqyq)

ϖ
, cz =

∑
e(p,q)∈3D-CFG(ϖpzp+ϖqzq)

ϖ
and ϖ =

∑
e(p,q)∈3D-CFG(ϖp +ϖq).

In the equation, e(p, q) is an edge in the 3D-CFG. This
edge connects two nodes p and q. < xp, yp, zp > is the coor-
dinate of node p. ϖp is the number of statements in the basic
block of p. It corresponds to the weight of a ball of a physical
object. After computing, the centroid of the 3D-CFG could
be viewed as the “mass” center of the 3D-CFG. We use the
3D-CFG in Figure 3(b) as an example. Suppose the values
of ϖA to ϖF are 5, 3, 4, 2, 1 and 0. ϖ = (5+3)+(3+4)+(3+
1)+(4+3)+(4+2)+(2+3)+(1+0) = 38. The value of x in
centroid is cx = 5×1+3×2×5+4×3×3+2×4×2+1×5×2

38
= 2.5526.

In this equation, 5 in 5 × 1 is the number of statements in
node A. 1 in 5×1 is the x part of the coordinate of node A. 3
and 2 in 3×2×5 are similar. 5 in 3×2×5 means that node
B appears 5 times in all edges in the 3D-CFG. Similarly, we
can get c⃗ =< 2.5526, 1.7105, 0.8158, 38 >. By increasing the
number of digits after the decimal point, the precision can
be increased.
The definition of the centroid could be extended. ϖ is de-

fined as the number of statements in a basic block. We could
define“ϖi = ϖ+# of ‘invoke’ in the basic block”. So
ϖi is impacted by the invoke statement in the method. We
give higher weights to invoke statement since Android apps
are highly dependent on the underlying framework APIs.

We can use ϖi to get the centroid c⃗i. By combining c⃗ and c⃗i,
we could decrease the false positive rate. We can use other
types of statements to further extend the definition of the
centroid. In this paper, we only use c⃗ and c⃗i because they
are accurate enough to distinguish millions of methods. We
use a centroid vector < c⃗, c⃗i > to represent a method.

3.1.4 Monotonicity of Centroids
We leverage the monotonicity property of centroids to

achieve high accuracy and high scalability. This property
includes two parts: P1) Two same methods have the same
centroid. P2) When a method changes a little, its centroid
will not change a lot.

P1 keeps the correctness of the centroid approach. If two
of the same methods have different centroids, a high false
negative rate may result. P2 makes the similarity between
methods m1 and m2 monotonically correlate to |c⃗1 − c⃗2|.
When |c⃗1−c⃗2| is smaller, the similarity between two methods
will be more. When |c⃗1 − c⃗2| is larger, there will be less
similarity.

Remark 1. Most approaches (e.g., hash-based and symbolic-
based) do not meet P2. When only one statement is changed
in a method, we cannot estimate how much a hash sequence
or a symbolic value will change.

Remark 2. Centroids are sortable. Based on P1 and P2,
after sorting the centroids, we only need to compare a cen-
troid with its neighbors, but not all the centroids. That is,
we are able to localize the global pairwise comparison to a
small number of centroids, which dramatically decreases the
time complexity of pairwise comparison.

3.2 Method-Level Similarity
Centroid Difference Degree (CDD) for two centroids c and

c′ is defined as follows: CDD(c⃗, c⃗′) = max(
|cx−c′x|
cx+c′x

,

|cy−c′y|
cy+c′y

,
|cz−c′z|
cz+c′z

, |ϖ−ϖ′|
ϖ+ϖ′ ).

CCD is the normalized distance for each dimension. It
can directly measure the difference between two centroids.
Suppose there are two methods m<c⃗, c⃗i> and m′<c⃗′, c⃗i′>.
Methods Difference Degree MDD = max(CDD(c⃗, c⃗′),
CDD(c⃗i, c⃗i′)).

MDD can be used to compare methods. If two methods
are the same, MDD = 0. This meets P1 of monotonicity. If
a statement is changed inside a basic block, the centroid c⃗
will not change. If we use the extended centroid such as c⃗i,
we may find the difference. Changing the sequence of two
statements inside a basic block does not change the centroid
of the method. From the definition of the centroid, adding or
removing a statement will make little impact to the centroid.
If more changes are made, c⃗ will also change more. Thus, the
centroid approach meets P2 of monotonicity, which makes
it suitable for method comparison.

3.3 Using Centroid to Detect App Clones
Challenge: Method-level similarity could be used to get

similar apps. However, similar apps are not always app
clones. For similar apps, they usually fall into the follow-
ing three categories. C1) Apps from the same author; C2)
Apps developed using the same framework or using common
third-party libraries (e.g. advertisement libraries); C3) App
clones. We need to separate C3 from C1 and C2.

To address this challenge, (1) we first use Application Sim-
ilarity Degree to measure how similar two apps are; (2) us-



ing an ASD threshold and Clone Groups (C-Groups), we
separate category C1, C2, C3 apps from other apps in the
market; (3) we remove C1 by comparing public keys of apps;
(4) we further remove C2 using a library whitelist. Then
what remains is C3.

(1) Measure app-level similarity.
App-level similarity is measured using the results of method-

level similarity.

Definition 3.3 (Application Similarity Degree) For
two apps a1 and a2, Application Similarity Degree (ASD)
measures the extent to which a2 contributes its methods to a1.
ASD(a1, a2) = |a2,1|/|a2|. |a1| is the number of methods in
a1. a2,1 is a set of methods. For each method mi in the set,
it meets the following two conditions: 1) mi ∈ a2; 2) There
is at least one m′ ∈ a1 that satisfies MDD(m′,m) ≤ δ. δ is
a threshold for method-level similarity. |a2,1| is the number
of methods in it.

Note that ASD(a1, a2) may not be equal to ASD(a2, a1).
We do not use a symmetrical definition. This is because
ASD will not change when an app clone adds lots of ads or
libraries. It is very common for an app. For example, we
find an app named com.fgdfhghgh.turbofly_10255200_0

has at least 22 ads. Current definition of ASD can detect
this situation. But a symmetrical definition of similarity
between two apps cannot detect this. Using ASD, one can
know the percentage of methods in a2 that are cloned to a1.

(2) Get C1, C2 and C3.

A threshold ∆ can separate C1, C2 and C3 from the other
apps in multiple markets due to this insight: for any two
apps, if they do not belong to C1/C2/C3, then their ASD
will not be high.

(3) Remove C1 and C2.

Three observations of C1 and C2 are found. 1) For an
app in Android markets, it uses the author’s private key to
sign each file and stores the corresponding public key inside
the app for verification. If apps are developed by different
authors, their public keys are different. 2) Apps developed
using the same frameworks (e.g. PhoneGap) or using com-
mon third-party libraries directly store the libraries inside
the app. 3) When two apps a1 and a2 have very different
sizes (number of opcodes), ASD(a1, a2) could be very high if
the big app uses a large portion of the methods in the small
app. However, this does not indicate app clones because the
big app usually supplies significant more functionalities than
the small one. Based on the three observations, we use the
concept of C-Groups to separate C3 from C1 and C2.

Definition 3.4 (Clone Group) A Clone Group (C-Group)
is a set of apps. It meets the following four conditions.
• For any two apps a1 and a2, if MAX(ASD(a1, a2),

ASD(a2, a1)) ≥ ∆, they are in the same C-Group. ∆ is
a threshold for ASD.
• For any app in Android markets, it is at most in one

C-Group.
• No two apps in the C-Group have the same public key.

We do not check which app is the original one.
• Due to the observation (3), the size of small app is at

least two-thirds of the bigger app.

From condition 1 in Definition 3.4, for any app a1 in a C-
Group, there is at least one app a2 in the C-Group such that

MAX(ASD(a1, a2), ASD(a2, a1)) ≥ ∆. From condition 2,
two C-Group can never share one apps. From condition 3,
any two apps in a C-Group have different public keys. Based
on observation (1), no two apps in the C-Group are from the
same author. So we can remove C1. We do not use the app
names or the author information in the market website since
they can be spoofed.

ASD does not compare the methods in the library whitelist.
Thus, ASD will not be impacted by those libraries. So C2
could be removed by a suitable ∆. We manually identify
some known libraries (e.g., “android/support). The full list
is in [8]. If libraries outside the list make two apps be falsely
viewed as app clones, it is a false positive. We evaluate the
false positives in Subsection 5.2.3.

4. IMPLEMENTATION
We implement a prototype to do preparation, to generate

centroids and to perform cross-market app clone detection.
This prototype includes about 7,000 lines of C++ code and
500 lines of python code.

In the preparation step, we use a python script to down-
load apps (APK files) from five Android markets. Then we
transform APK files to SMALI code using the tool called
baksmali [43]. It is a disassembler for Android’s DEX for-
mat. We use this SMALI code since it could be assembled to
runnable DEX format again. This code type is an attractive
intermediate form for app clone. We parse the SMALI code
and generate 3D-CFGs.

In the centroid generation step, we give coordinates to the
nodes in 3D-CFGs and compute the centroids. Then we put
the centroids into a database. Each record in the database
corresponds to a method. It contains the market name, app
file name, class name, method name and centroids (Figure 2).
We generate SMALI code and centroids of different apps in
parallel. Thus, when more computers are used, the analysis
time will be decreased. We use an incremental approach to
update the database. When a new app is added into the
market, we only need to generate centroids for methods in
the app and insert them into the database.

In the clone detection step, we compare each method in
one app with all the methods in other apps. If one uses SQL
queries to do the comparisons, we find that is very slow. So
we use in-memory comparisons. Considering the two prop-
erties of centroids, one can compare centroids after sorting
them. So the time complexity for comparison will decrease
from O(M2) to O(c · M). M is the number of methods
in multiple markets. O(M2) is the time complexity of tra-
ditional pairwise comparison. c is the average number of
methods with which one method needs to compare. Usually,
c << M . Based on our evaluation, c ≈ 7.9.

5. EVALUATION
We evaluated our approach on five typical third-party An-

droid markets: two American markets (Pandaapp [37] and
Slideme [42]), two Chinese markets (Anzhi [3] and Dan-
gle [11]) and one European market (Opera [36]). We per-
formed a cross-market analysis to find app clones. Our
experiments were conducted on Lenovo Thinkcenters with
CORE i5 3.2GHz CPU and 4GB of memory.

5.1 Cross-Market App Clone Detection
The number of apps in C-Groups and the number of C-

Groups give a direct impression of the app clones in An-
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Figure 4: Histogram of the C-Group sizes on logarithmic
scale.

droid markets. Two C-Groups never share the same app.
∆, the threshold for application similarity degree, impacts
the results. We use ∆ = 0.88 to perform the cross-market
app clone detection. When ∆ = 0.88, the measured false
positive rate through 100 manual examination of randomly
selected C-Groups is 0% (Subsection 5.2.3).

How many apps are in C-Groups? When an app is in a
C-Group, it means that either this app is an app clone or
at least one other app clones this app. For the five markets,
we detected 3,916 C-Groups and in total 20,292 apps are
in these C-Groups. That is, 13.51% of the apps in all five
markets are in C-Groups.
Among the 20,292 apps, 1,416 apps are from the Pan-

daapp market, which takes 13.54% of the apps in Pandaapp.
2,022 apps are from the Slideme market (14.23% of Slideme),
9,850 apps are from the Anzhi market (18.39% of Anzhi),
4,268 apps are from the Dangle market (19.59% of Dangle),
and 2,736 apps are from the Opera market (5.46% of Opera).
The ratio for the two Chinese Android markets (Anzhi and
Dangle) are higher than others. The ratio for the two Amer-
ican Android markets (Pandaapp and Slideme) are on aver-
age. The European market has the lowest ratio.

Histogram of the C-Groups. The number of apps in C-
Groups gives an overview of the app clones. We use the his-
togram of C-Groups in Figure 4 to show the details. The x-
axis shows C-Group size (the number of apps in a C-Group).
The y-axis shows the number of the C-Groups with a certain
size. From the figure, we find that the majority of C-Groups
consist of small number of apps. 59% of C-Groups contain
two apps. Over 90% of C-Groups contain less than 7 apps.
Only 0.4% of C-Groups contain more than 100 apps. The
largest C-Group consists of 566 apps.

How many C-Groups are cross-market? If a C-Group con-
tains apps from different markets, we say the C-Group is
cross-market. After analyzing the C-Groups, we find 1,779
out of 3,916 C-Groups are cross-market. That is, 46% of all
the C-Groups are cross-market C-Groups. This shows that
attackers would like to publish the app clones in different
markets for more benefits. This also justifies the necessity
to do cross-market app clone detection. Figure 5 shows the
cross-market app clone situation. The five nodes are corre-
sponding to the five markets. The number beside an edge
shows how many C-Groups cross the two markets. We find
that the two Chinese markets have more cross-market C-
Groups than other markets.

112
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Opera

Dangle

Slideme Pandaapp

229

398

219

362

715

209

213
393

113

Figure 5: Cross-market app clone situation. The five nodes
are corresponding to the five markets. The size of a node is
proportional to the number of apps in a market. Two mar-
kets with deep color (Dangle and Anzhi) are Chinese mar-
kets. The market with light color (Opera) is from Europe.
The other two markets are American markets. The number
beside an edge shows how many C-Groups cross the two mar-
kets. The thickness of an edge is proportional to the number.

5.2 Accuracy
To get good accuracy, application similarity degree (ASD,

in Subsection 3.3) and its threshold ∆ must work well. In
other words, they need to meet the following two require-
ments: R1) ASD needs to measure the unbiased similarity;
R2) C-Groups should separate C3 from C1 and C2. To sat-
isfy R1, method-level accuracy is essential. So we measure
the false positive rate and false negative rate at method-level
in Subsection 5.2.1 and 5.2.2. To satisfy R2, we manually
verify the detected app clones (false positive) in Subsection
5.2.3.

5.2.1 False Positive Rate at Method Level
The centroid approach gives out similar method pairs. We

need to check whether they are real clones. If not, false pos-
itives occur. Checking not-cloned pairs needs manual effort.
However, even for a small testset (103 apps with 106 meth-
ods), the number of similar method pairs usually exceeds
108. If we randomly select a subset (e.g., 1000 pairs) and
manually check them, it is not representative. Neither can
we manually check all the pairs. So an automatic mechanism
to approximate the number of real clones is necessary.

We use the longest common subsequence (LCS) [18] of op-
codes for approximating the number of method clones. LCS
is widely used in clone detection (e.g., [53]) and plagiarism
detection (e.g., [51]). Thus, we use LCS to compute the sim-
ilarity between methods. For two methods m1 and m2, we
view each method as a sequence of opcodes. Suppose l1 and
l2 are the numbers of opcodes in m1 and m2, respectively.
If the LCS between m1 and m2 contains lmax opcodes, the
similarity between m1 and m2 is lmax

max(l1,l2)
. We use the same

threshold (70%) used in [53].
We select 500 apps randomly from each Android mar-

ket to form a testset (“Andr2500”). Then we use these
2,500 apps to estimate the method-level false positive rate
(MFPR). The size of the testset is 13.2GB. It contains
2,633,144 methods and 478,096,757 opcodes. The curve in
Figure 6 shows the estimated MFPR. When the threshold
δ (Subsection 3.3) for method-level similarity is less than
0.01, MFPR < 1%. When δ = 0, MFPR = 0.38%.

5.2.2 False Negative at Method Level
To get method-level false negative rate (MFNR), we need

to count how many method clones are not identified by our
approach. However, we could not find such a benchmark
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Figure 6: The estimated MFPR.
When δ = 0, MFPR = 0.38%.

Figure 7: MFNR decreases with the
increas of δ. All the false natives are
small CFGs (with less than 4 nodes).

Figure 8: We manually check the
app clones (“Andr2500” testset) re-
ported by our tool.

for Android apps. Moreover, generating method clones by
arbitrarily transforming methods may not capture the char-
acteristics of real clones on Android market. Neither can
we check all the method pairs in “Andr2500” testset (over
1012) even using the automatic mechanism. So how to use
an unbiased way to get the ground truth of method clones
which could also represents real clones on Android markets?

To get the unbiased method clones, we first get the ground
truth of app clones by manually installing and comparing
apps. Note that the results of app clones are not based on
any method level analysis, which will make our test more
unbiased. Secondly, we manually compare the methods of
these app clones and get the method clone pairs. At last,
we use the centroid-based approach to detect method clones.
Suppose the number of method clone pairs manually verified
by us is mp and the number of detected pairs is mpd. Then
MFNR = 1−mpd/mp.

To increase the possibility to find app clones, we down-
load apps from two aspects: A1) similar names, or A2) sim-
ilar descriptions or keywords such as “sudoku”. Attackers
would also like to use A1 and A2 to let users easily find the
app clones. After downloading, installing and comparing the
apps, we got 112 app clones (in 40 C-Groups) with 62,121
methods. We randomly select 1,000 methods and manually
find the method clones in the corresponding app clones. Af-
ter manually identifying method clones, we randomly select
1,000 pairs, which serves as the unbiased ground truth.

Figure 7 shows the results. From the figure, we find that
MFNR decreases with the increase of δ. When δ = 0, the
MFNR is 0.7%. When δ increases to 0.02, the MFNR is
0.4%. We checked these method pairs and found they are
all small CFGs (with less than 4 nodes).

Why the centroid approach has very low MFNR
with controllable MFPR? It has a unique “capability”
to distinguish cloned methods. Based on the false negative
test results (Figure 7), we find that the method pairs with
δ = 0 take more than 99% of all the clone pairs. When a
method pair is detected as method clones, the probability
that these two methods have the same centroid is 99% or
higher. This is the reason why both MFNR and MFPR
are so low. When δ is non-zero, the number of cloned method
pairs is surprisingly low (less than 1%). This means when
the centroids of two methods m1 and m2 are different, the
probability that m1 and m2 are a cloned pair is less than 1%.
So the centroid approach has the capability to distinguish
method clones. One main reason is that centroids keep part
of structure information of CFGs. We call it as the “cen-
troid effect”. It is a unique characteristic to make both the
MFNR and MFPR low.

5.2.3 Accuracy in Detecting App Clones
We first use “Andr2500” as the training testset to get the

suitable value of threshold ∆ for application similarity de-
gree. Then we use this value to detect app clones in all the
five markets and evaluate the false positive rate.

(1) Get ∆ from a Training TestSet

The value of ∆ impacts how well our approach separates
app clones from other apps. Recall that we use C-Groups
to perform this separation. Given the C-Grouping results,
if an app in a C-Group is not an app clone, we call it a
false positive. So we can use the number of false positives
to choose suitable ∆.

We use “Andr2500” as the training testset and get C-
Groups by different ∆. For each app in the C-Groups, we
manually install it and look into the SMALI code. Then we
compare it with other apps in the same C-Group. If it is not
really an app clone, a false positive occurs. Figure 8 shows
the results. For each ∆, the left bar shows the number of
app clone detected by our tool and the right bar shows the
number of app clones after manual check. From the figure,
the number of false positives decreases with the increase of
∆. But when ∆ increases, some manually confirmed app
clones can no longer be detected. We choose ∆ = 0.88 to de-
tect app clones in all the five markets as the number of false
positives and false negatives are both small at this point.

(2) False Positive Rate on Five Android Markets

To get the ground truth of app clones, we manually check
the apps in C-Groups. Based on our manual check, we con-
firmed the apps in the C-Groups. For the five markets, our
approach detected 3,916 C-Groups and in total 20,292 apps
are in these C-Groups. It is not feasible to manually check
all of them. Instead, we randomly select 100 of the 3,916 C-
Groups and then manually check each app in the C-Groups.
For any app in a C-Group, if it is not really an app clone,
we view the whole C-Group as a false positive, which is very
conservative. After manually checking the 359 apps in the
100 C-Groups, we did not find any false positive.

Remark 1: In total there are 3,916 C-Groups. If the re-
maining C-Groups are checked, based on the following ob-
servation, the false positive rate should also be around zero.
False positives come from two aspects: 1) Wrongly detected
method clones. Since apps usually have many methods to
support various functionalities, impacting the results of app
clones needs a large number of wrongly detected clones. Due
to the low false positive rate (0.38%) at method-level of our
approach, for a method with 300 methods, only 1 method
on average is wrongly viewed as clone. This is almost im-
possible to impact the result of app clones. 2) Common
libraries. If two apps use common libraries and the num-
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Figure 9: Number of occurrence vs
size per app.

Figure 10: Number of occurrence vs
number of opcodes per app

Figure 11: Number of occurrence
vs number of methods per app
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Figure 12: Time to compute centroids.
Besides linearly increasing with the num-
ber of apps, the time also linearly de-
creases with the number of computers.

Figure 13: Time to perform app
clone detection. This time is almost
linear with the number of apps.

Figure 14: Time to perform clone
detection for new apps and time to
update the market database.

ber of the methods in the libraries is far more than that
of the core functionalities, false positives will occur. This
usually happens when an app is very small and it uses a
lot of libraries (e.g., ads). However, we whitelist 73 popular
libraries, which makes the possibility very low. Moreover,
when we add two apps into a C-Group, the size of small app
cannot be too small (at least two-thirds of the bigger app).
This will further decrease the false positive rate.

Remark 2: We did not attempt to measure the false neg-
ative rate since it is not feasible to get the ground truth of
app clones (i.e., manually performing 1-to-1 comparison for
all the 150,145 apps). However, we compare the results with
others [53] and find our approach detects more app clones.

5.3 Scalability
We measure the scalability of our approach from the fol-

lowing three aspects: the scale of the five markets, the per-
formance on cross-market app clone detection and updating.

5.3.1 Dataset Statistics
We analyze all apps in the five markets to gain a gen-

eral understanding of our dataset. Figure 9 to 11 show the
distribution of the sizes of APK files in megabytes, the distri-
bution of opcodes per app and the distribution of methods
per app. All these distributions are skewed to the right.
About 90% of apps are less than 13MB and 54% of apps are
less than 3MB. About 50% of apps have opcodes less than
11,000 and have methods less than 200. The total file size
of these APKs is 869GB. The total number of opcodes in
all apps is approximately 26 billion. The total number of
unique methods in all apps is about 203 million.

5.3.2 Performance on Cross-Market App Clone De-
tection

Whole market app clone detection can be divided into two
steps: centroid generation and clone detection.

Centroid generation. The time needed to generate the
centroid depends on the number of apps in the market. This
step can be done in parallel. We use 1 computer, 2 comput-

ers and 4 computers to measure the time. Figure 12 shows
the results. From the figure, we can see that the time lin-
early increases with the number of apps in the market. The
time also linearly decreases with the number of computers.
If we use 4 computers, we can generate centroids for the
whole market in about 40 hours.

Clone Detection. The performance of clone detection
depends on the number of apps. Figure 13 shows the time
to detect app clones. From the figure, we find that the time
almost linearly increases with the market size. It takes less
than an hour to detect app clones on the five whole markets
with 150,145 apps.

What is the value of “c” in the time complexity O(c ·M)?
Our approach detects app clones using the results of method-
level comparison. Different from other approaches, the prop-
erty “monotonicity” of centroid localizes the global pairwise
comparison to a small number of methods, which dramati-
cally decreases the time complexity of pairwise comparison.
The smaller the value of c, the less time is needed for com-
parison. In this cross-market app clone detection process,
we record this value. The average value of c is 7.9. That
is, for each method, our approach on average only needs to
compare it with less than 8 other methods, instead of 203
million methods. This is the reason why we can process
150,145 apps apps within one hour.

5.3.3 Performance on Clone Detection for New Apps
and Market Updating

Adding new apps is very common in Android markets.
After a new app is uploaded to the market, it should first
be checked whether it is an app clone. In this process, it
will be compared with all the apps in the whole market. If
it is not cloned, it can be added to the market and become
available for downloading. Both the app checking time and
database updating time should not be long.

We evaluate the performance using real data. For the
centroid database, we use the current database of all the five
Android markets. For the newly added apps, we download
them from another third-party market (1mobile) [1]. It is a



popular market in the U.S. Considering the size of the new
apps may impact the time, we divide them into five groups.
Each group has five apps with similar sizes of APK files.
Figure 14 shows the results. The upper curve shows the

average app checking time for the group. This process in-
cludes the time of generating SMALI files, getting centroids
and detecting clone status of the new apps. From the figure,
it takes about 8 seconds to finish these steps on average. We
also find the time is not linear to the APK file sizes. This
may be because resource files take some spaces in the app.
Considering there are more than 100 methods in each app
on average, it takes less than 0.1 second to find the method
clones from 203 million methods. The lower curve shows the
database updating time, which is less than 0.1 seconds.

6. LIMITATIONS
Centroid-based approach has several limitations. Firstly,

although our approach is extremely effective to detect Type
1, Type 2 and Type 3 clones, it may not be effective to
detect Type 4 clones. Type 4 clones require the attackers
to understand the code. Type 2 and 3 clones are effective
for attackers to achieve their goals. They would probably
not pay the effort to understand and perform the advanced
transformation on the bytecode of legitimate apps. Actually,
we did not find Type 4 clones on Android markets.

Secondly, adding one node in small CFGs (with less than
4 nodes) may change the centroids a lot (Attackers may not
delete a node from CFGs since they want to keep the original
functionalities). But for big CFGs (with 4 nodes or above),
centroid-based approach is effective. Based on our evalua-
tion, small CFGs take about 2.3% of all the opcodes in all
the five markets. We believe we can ignore them.
Thirdly, an app clone could evade detection by only cloning

a small number of methods in the original app (partial cloning).
We note that there are no general solutions for handling
partial cloning. However, core methods (i.e., functionalities)
need to be reused. Otherwise, the cloned app may not work
properly. One solution to detect partial cloning is to find the
core methods in the apps and only compare these methods.
The core methods could be chosen by their sizes such as the
number of nodes in the CFGs.
Fourthly, if an app clone has far more opcodes than the

original app, we may not detect it (due to the condition 4 in
the definition of C-Group). This usually happens when some
apps are developed on the basis of open source apps (e.g.,
sample apps from Android SDK). If they have lots of new
functionalities, we should not view them as clones. An ex-
ception is that an app is cloned by adding lots of ad libraries.
However, the whitelist with 73 popular libraries greatly in-
creases the possibility to detect the app clones. It could also
be extended. For the unpopular libraries, attackers would
probably not add lots of them at the same time.

7. RELATED WORK
Centroid-based cloning detection is mainly related to three

bodies of work as follows.
Clone detection. String-based approaches [5, 4] view each

line of source code as a string and detect clones based on
matching the sequence of strings. Token-based approaches
[40, 28, 29, 22] parse a program to a sequence of tokens and
compare these tokens to find clones. AST-based approaches
[24, 47, 50, 7, 6] construct the abstract syntax trees (AST)

from two programs and detect clones by finding the com-
mon trees. Lee et al. [26] introduced a multidimensional
token-level indexing using an R* tree on Deckard’s vectors
[20]. Graph-based approaches [31, 12, 25, 13, 27] generate
CFGs or PDGs from programs and compare them by sub-
graph isomorphism. Kim et al. proposed a symbolic-based
approach [23] to capture semantically equivalent procedures.
Detailed analysis of these approaches is in Subsection 1.2.

Detection of similar Android apps. Juxtapp [17] detects
code reuse in Android apps by feature hashing. DroidMOSS
[53] uses a fuzzy hashing technique to detect app clones.
DNADroid [9] detects Android app clones by performing
subgraph isomorphism comparison on PDGs. Androguard
[2] uses several standard similarity metrics to hash methods
and basic blocks for comparison. PiggyApp [52] extracts var-
ious features such as the requested permissions of primary
modules to detect “piggybacked” apps. AnDarwin [10] splits
PDGs to connected components and extracts a vector which
contains the number of specific types (e.g., binary operation
type) for each components. Then it uses locality sensitive
hashing to find similar vectors as code clones. Its false pos-
itive rate is 3.72% for full app clone detection. For core
functionality clone detection, its false positive rate could be
very high. CLAN [32] detects related Java apps using API
calls, which could be potentially applied to Android apps.

Software birthmark. A software birthmark is a unique
characteristic of a program that can be used to determine
the program’s identity. Birthmark can be divided into two
categories: static birthmark and dynamic birthmark. Static
birthmarks [34, 44] are usually the characteristics in the code
that cannot easily be modified such as constant values in
field variables, a sequence of method calls, an inheritance
structure and used classes. Lim et.al [30] proposed an n-
gram flow path birthmark. The bytecodes in n continuous
basic blocks are concatenated to construct a possible flow
path. To compare two flows, the semi-global alignment al-
gorithm is used. To compare two birthmarks (i.e., two sets
of flows), a maximum weight matching is performed on the
set of all pairwise comparisons of those flows. The matching
sum is used for measuring the similarity. A centroid could
be viewed as a novel static birthmark. Dynamic birthmarks
are usually as follows: whole program path [33] birthmark,
sequence of API function calls/frequency of API function
calls birthmark [46, 45], call sequences to Java standard
API [41], system calls birthmark [48] and invariant value
sequences birthmark [19]. They need to dynamically ana-
lyze the program, which is not suitable for cross-market app
clone detection.

8. CONCLUSION
We present a centroid-based approach to detect cross-market

app clones in five whole Android markets. The observed
“centroid effect” and the inherent “monotonicity” property
enable our approach to achieve both high accuracy and scal-
ability. It takes less than one hour to perform cross-market
app clone detection. Regarding future work, more analyses
of the detected app clones are yet to be done.
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