
SemFuzz: Semantics-based Automatic Generation of
Proof-of-Concept Exploits

Wei You1, Peiyuan Zong2,3, Kai Chen2,3,∗, XiaoFeng Wang1,∗, Xiaojing Liao4, Pan Bian5, Bin Liang5
1School of Informatics and Computing, Indiana University Bloomington, Indiana, USA

2SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

4Department of Computer Science, William and Mary, Virginia, USA
5School of Information, Renmin University of China, Beijing, China

{youwei,xw7}@indiana.edu,{zongpeiyuan,chenkai}@iie.ac.cn,{xliao02}@wm.edu,{bianpan,liangb}@ruc.edu.cn

ABSTRACT
Patches and related information about so�ware vulnerabilities are
o�en made available to the public, aiming to facilitate timely �xes.
Unfortunately, the slow paces of system updates (30 days on aver-
age) o�en present to the a�ackers enough time to recover hidden
bugs for a�acking the unpatched systems. Making things worse is
the potential to automatically generate exploits on input-validation
�aws through reverse-engineering patches, even though such vul-
nerabilities are relatively rare (e.g., 5% among all Linux kernel
vulnerabilities in last few years). Less understood, however, are the
implications of other bug-related information (e.g., bug descriptions
in CVE), particularly whether utilization of such information can
facilitate exploit generation, even on other vulnerability types that
have never been automatically a�acked.

In this paper, we seek to use such information to generate proof-
of-concept (PoC) exploits for the vulnerability types never automat-
ically a�acked. Unlike an input validation �aw that is o�en patched
by adding missing sanitization checks, �xing other vulnerability
types is more complicated, usually involving replacement of the
whole chunk of code. Without understanding of the code changed,
automatic exploit becomes less likely. To address this challenge,
we present SemFuzz, a novel technique leveraging vulnerability-
related text (e.g., CVE reports and Linux git logs) to guide automatic
generation of PoC exploits. Such an end-to-end approach is made
possible by natural-language processing (NLP) based information
extraction and a semantics-based fuzzing process guided by such
information. Running over 112 Linux kernel �aws reported in the
past �ve years, SemFuzz successfully triggered 18 of them, and fur-
ther discovered one zero-day and one undisclosed vulnerabilities.
�ese �aws include use-a�er-free, memory corruption, informa-
tion leak, etc., indicating that more complicated �aws can also be
automatically a�acked. �is �nding calls into question the way
vulnerability-related information is shared today.

∗ Corresponding Authors
.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3133956.3134085

CCS CONCEPTS
•Security and privacy→ So�ware security engineering;

KEYWORDS
exploit generation, vulnerability, patch, fuzzing, semantics

1 INTRODUCTION
Today information and patches for so�ware vulnerabilities, even
those security-critical ones, are o�en publicly available, for the
purpose of raising the awareness of these problems and facilitating
their timely �xes. Unfortunately, system updates are o�en slow,
even in the presence of security �aws, as evidenced by the recent
WannaCry ransomware outbreak [22], which exploits the Eternal-
Blue bug whose patch has been released months ago. As a result,
miscreants are o�en given a large time frame (30 days on aver-
age [45]), during which they can leverage the information exposed
by public patches to recover hidden bugs, and a�ack the systems yet
to be patched. Indeed, research almost a decade ago [28] shows that
it is possible to automatically reverse-engineer a patch to generate
an exploit for the vulnerability meant to be �xed by the patch. Less
understood, however, are the implications of other information,
such as the reports from common vulnerabilities and exposures
(CVE) systems [9], Linux git logs [15] and bug descriptions posted
on forums and blogs [12–14], to this ongoing patching-exploit arms
race. Particularly, from the a�acker’s viewpoint, whether such in-
formation can also be leveraged for automatic construction of more
complicated exploits? from the defender’s side, how to control such
information leaks to make the automatic a�ack harder to succeed?

Challenges in automatic exploit generation. Actually, auto-
matic exploit generation is hard. �e prior study [28] only creates
the a�acks on input-validation �aws, a type of bugs relatively easy
to discover and �x, given their prominent feature (missing of sani-
tization checks). An exploit on such �aws can be constructed from
a patch by seeking an input that fails the newly added checks. In
other words, to generate such exploits, an automatic approach �rst
�nds a path from the program’s entry point to the new check, then
recovers the constraints for reaching the check on the path. Such
constraints, which are built through symbolic execution [36], are
then resolved to obtain an input that fails the check and therefore
is likely to cause an exploit on the vulnerability.

Table 1: �e types of vulnerability addressed in this paper.

Vulnerability Type Percentage
Information leak/disclosure 10.62%
Denial of service 9.38%
Null pointer dereference 9.04%
Uncontrolled resource consumption 7.91%
Use a�er free 6.67%
Bu�er over�ow 5.76%
Memory corruption 4.18%
Integer over�ow 3.39%
Bu�er over-read 3.16%
Improper access control 2.82%
Race conditions 2.60%
Numeric errors 2.49%
Double free 1.36%
In�nite loop 1.24%
Deadlock 0.68%
Divide by zero error 0.45%

Compared with such input-validation �aws, other types of vul-
nerabilities (like uncontrolled resource consumption, deadlock,
memory corruption, etc.), however, are more complicated and can-
not be patched by simply adding a check. Actually, more o�en than
not, their related vulnerable statements or even the whole chunk of
code need to be replaced by the patch, making the vulnerable code
hard to detect, not to mention an a�empt to exploit it through the
aforementioned constraints �nding and resolving. To the best of
our knowledge, so far, li�le has been done to automate the exploits
of these complicated, deep program �aws.

Even for the a�ack on input validation, symbolic execution and
constraint solving are known to be di�cult. For real-world pro-
grams, path constraints leading to vulnerable program locations
tend to be non-linear, o�entimes, rendering current solvers (e.g.,
STP [19]) hard to �gure out a suitable input. Making it worse are
the global variables in the target program, whose values are o�en
assigned in one thread but used in another. Once this happens,
the path constraints for reaching vulnerable code would become
incomplete (given the missing assignment) and cannot be made
right without looking at other threads. �is, however, becomes
too complicated for the current symbolic execution and constraint
solving systems to handle. For example, CVE-2017-6347 reports a
vulnerable function ip cmsg recv checksum in Linux kernel invoked
by the system call recvfrom. An essential condition for triggering
the vulnerable function is to �ll a sk buff bu�er, which will be
referenced in the kernel structure socket. However, on the path
from recvfrom to the vulnerable function, no such code exists, and
it turns out that this is done in another system call sendto, which
is supposed to be called before invoking recvfrom.
Our approach. In this paper, we demonstrate that complicated
vulnerabilities can also be automatically exploited, even in the
absence of sophisticated constraint solving techniques. Instead, we
utilize non-code text related to a vulnerability, particularly CVE
reports and Linux git logs, to extract guidances, which are found to
be su�ciently informative for helping discover and trigger a set of

deep bugs. Our technique, called semantics-based fuzzing (SemFuzz),
automatically analyzes bug reports to create end-to-end proof-of-
concept (PoC) exploits 1 on various Linux kernel vulnerabilities,
including double free, use-a�er-free and memory corruption, etc.,
as illustrated in Table 1. Compared with the prior work [28], which
targets the input-validation vulnerabilities (only 5% among all the
Linux kernel �aws reported in recently 2), SemFuzz is capable of
handling a wide range of vulnerabilities within the kernel code.
Note that unlike relatively simple programs receiving a single input
(e.g., a �le), as studied in the prior research, the kernel code is much
more complicated, with its vulnerable component only reachable
through some speci�c system call sequences (e.g., sendto and then
recvfrom).

More speci�cally, given a reported vulnerability, SemFuzz �rst
utilizes Natural Language Process (NLP) to analyze its CVE and git
log reports. CVE provides a reference method for publicly known
security vulnerabilities and exposures, publishing the information
such as a�ected versions, vulnerability type, and vulnerable func-
tions. �e Linux git log includes a patch and the description about
how it works. Such information is invaluable for the exploit gen-
eration process. For example, they tell us the exact version of the
vulnerable program for se�ing up the right testing environment.
More importantly, it may also explain the types of vulnerabilities,
what to expect when hi�ing the target (crash, hang, memory cor-
ruption, etc.), the whereabouts of a vulnerable function, and even
the key variables and their values for guiding the program exe-
cution toward the bug. Leveraging the information automatically
collected, SemFuzz creates a call sequence reaching the vulnerable
function, and then iteratively “mutates” the parameters of individ-
ual calls to move towards the patched code inside the function, until
the target vulnerability is triggered.

�is semantics-based, intelligent fuzzing technique turns out to
be very e�ective. In our research, we ran our implementation over
112 Linux kernel vulnerabilities reported by CVE in the past �ve
years. 16% of them were successfully triggered. For the remaining
CVEs, although SemFuzz did not produce end-to-end PoC exploits,
it automatically discovered the inputs that move the program exe-
cution towards vulnerable functions, which can signi�cantly speed
up the process to manually build exploits. Also interestingly, our
approach even discovered one zero-day vulnerability and one undis-
closed vulnerability, when fuzzing the kernel for triggering known
�aws. �ese new �ndings have already been con�rmed by the
Linux kernel developer group. Our studies show that these new
vulnerabilities either appear around the known �aws or are similar
problems inside equivalent components (Section 6.5). �e results
strongly indicate that public bug descriptions today indeed leak
out critical information, which can be practically utilized to gener-
ate a�ack instances, exploiting the vulnerabilities that cannot be
a�acked automatically through patch analysis alone.
Contribution. �e contributions of this paper are as follows:

1Following [28], we de�ne a proof-of-concept exploit as inputs that trigger a vulnerabil-
ity to crash the target program without executing further a�acks such as control-�ow
diversion.
2We consider the �aws that can be �xed by adding sanitization checks on inputs as
input-validation vulnerabilities, as de�ned in the prior work [28].

• New technique. We designed and implemented SemFuzz, the
�rst semantics-based, intelligent fuzzer that automatically recov-
ers vulnerability-related knowledge from text reports and utilizes
such information to guide systematic construction of test cases for
triggering a known or related unknown �aw.
•New understanding. Our study demonstrates that non-code textual
bug descriptions (e.g., CVE, Linux git logs) are valuable information
sources for reconstructing exploits on known vulnerabilities. Over
112 Linux kernel �aws reported in the past �ve years, SemFuzz
successfully triggered 18 and further discovered two related un-
known bugs. More importantly, our research goes beyond simple
input-validation bugs, providing evidence that more complicated
�aws can also be automatically a�acked using bug-related public
information. �is �nding calls into question the way vulnerability-
related information is shared today, and could lead to more serious
e�ort to control the information leaks from those sources.

2 BACKGROUND
Vulnerability and Patch. A vulnerability is a weakness in so�-
ware or hardware components which allows an a�acker to reduce a
system’s information assurance [20]. By exploiting such vulnerabili-
ties, a�ackers could alter system resources or a�ect their operations,
compromising integrity or availability. �e consequences of a�acks
include millions of dollars lost in banks [1], billions of users’ pri-
vacy leakage [5], etc. To mitigate the impacts of vulnerabilities,
patches are designed to address them. For example, a program con-
taining input-validation vulnerabilities [11] accepts unsafe inputs
which may let the program run in an abnormal way. �eir patches
are usually in the form of sanitization checks that distinguish the
unsafe inputs and exclude them outside the vulnerable program
code. While serving to �x vulnerabilities, patches are also exposing
information of the vulnerabilities at the same time. A�ackers with
strong capability on vulnerability analysis may reverse engineer
the patches and even generate exploits for a�acks. Note that the
time interval between releasing a patch on developers’ side and
installing the patch on users’ side is 30 days on average [45], which
gives a�ackers enough time to impact lots of users. �e situation
becomes even worse when exploits could be generated in an au-
tomatic way [28], which lowers the bar of a�ackers’ capability on
vulnerability analysis. Fortunately, recent researches show that
only input-validation vulnerabilities (5% of all vulnerabilities [6])
were prone to such problem; and in reality, a�ackers can only gener-
ate exploits for a subset of such vulnerabilities due to the limitation
of symbolic execution [50]. However, in this paper, we are surprised
to �nd that many vulnerability types are exposed to such problem,
including uncontrolled resource consumption, deadlock, memory
corruption, etc.
CVE. CVE is a reference system sponsored by US-CERT for publicly
known information-security vulnerabilities and exposures [9]. Till
now, it maintained more than 85,000 vulnerabilities. Each year,
around 10,000 new vulnerabilities are added into the CVE system.
Every user can submit descriptions (e.g., the a�ected product and
version, the type of vulnerability, etc.) of a previously unknown
vulnerability to CVE. Once the vulnerability is veri�ed by so�ware
vendors, CVE assigns an ID to the vulnerability for reference. To
maximize the protection of the a�ected vendors, CVE will only open

Figure 1: �e architecture of SemFuzz.

vulnerability information to the public a�er patches are prepared.
Interestingly, in this paper, we �nd the descriptions in CVE can
actually help a�ackers to quickly generate PoC exploits, rather than
simply serving as a reference system.
Fuzzing. Fuzzing is an automated testing technique that feeds
manipulated inputs (e.g., random ones) to a so�ware program [53].
By observing the execution of a program, the tool of fuzzing (also
called fuzzer) reports a vulnerability whenever an abnormal run
(e.g., crash) is captured. Since fuzzing all the inputs of a program is
almost impossible, it is vital to choose a relatively small subset of
inputs that could still trigger the vulnerability. To �t this need, a
fuzzer should try to collect various kinds of valuable information
to guide the fuzzing process. Some recent studies observe that the
running status of a program could assist the selection of inputs to
avoid redundant runs [27, 49]. In this paper, we �nd that, besides
the running status, the non-code descriptions in CVE and Linux git
logs can also help the fuzzer to avoid unnecessary runs, saving a lot
of time in the fuzzing process. In particular, we use the semantics-
based approach (e.g., NLP) to automatically analyze the description
and extract necessary information for feeding to the fuzzer.

3 SEMFUZZ: DESIGN OVERVIEW
To address the challenges in triggering deep vulnerabilities, our
solution is to fuzz the target program by leveraging semantic in-
formation collected from vulnerability-related text sources. In this
way, we can avoid generating and solving complicated constraints
on inputs and also leverage new knowledge discovered to guide
exploit construction. �e procedure is illustrated in Figure 1, which
involves two main stages: (1) semantic information retrieving and
(2) semantics-based fuzzing.

Speci�cally, given a vulnerability in the Linux kernel, as docu-
mented by CVE, the �rst step is to extract useful semantic informa-
tion about the vulnerability from the descriptions in its CVE and
its corresponding Linux git log. Such information includes a�ected
version, vulnerability type, vulnerable functions, critical variables
and system calls. �en, SemFuzz loads the target kernel (with the
a�ected version) and fuzzes it using elaborately constructed test
cases. �e seed input (for the test cases) is �rst generated using
the system call information collected from the text descriptions.
During the fuzzing process, SemFuzz monitors the runtime status
of the target kernel and mutates the inputs using the vulnerable

Figure 2: CVE description and Linux git log of CVE-2017-6347.

function and critical variable information, in an a�empt to trigger
the vulnerability. Once an anomalous event (de�ned corresponding
to the vulnerability type) is observed, an alert will be issued to
indicate the PoC exploit is successfully generated.
Example. Figure 2 presents an example that demonstrates how
SemFuzz works on a given vulnerability (CVE-2017-6347) . �e
top-le� part of the �gure shows the CVE description of the vul-
nerability and the bo�om-le� part is the content of its Linux git
log, which is linked to the CVE through “patch commit id”. In the
CVE description, “Linux kernel before 4.10.1” indicates the a�ected
version. SemFuzz �rst starts a virtual machine with a pre-installed
kernel 4.10 (the latest version before 4.10.1) and prepares the fuzzing
environments. Using the concepts (i.e., “MSG MORE”, “loopback”,
“UDP”) discovered from the descriptions, SemFuzz builds the seed
input (system call sequence) “socket(AF INET, SOCK DGRAW,
0), sendto(…, MSG MORE, …, INADDR LOOPBACK, …)” to fuzz
the kernel (Section 4). During this process, our approach contin-
ues to mutate the inputs, based on the information extracted from
the patch (e.g., control-�ow graph of the vulnerable function) and
the feedback from monitoring the critical variables (“skb.len”), so
as to reach the vulnerable function (“ip cmsg recv checksum”) as
mentioned by the CVE, and further trigger the bu�er over-read
vulnerability (as described by the vulnerability type). Details of the
mutation strategies are illustrated in Section 5.
Scope and assumption. SemFuzz is designed to automatically
generate a PoC exploit from a Linux kernel patch with the help of
vulnerability descriptions in CVE and Linux git log. Our current
implementation can handle several types of common vulnerabilities,
including use-a�er-free, information leak/disclosure, null pointer
dereference, etc. (see Table 1 for the full list). �e objective here
is to generate inputs to trigger known vulnerabilities, though the
technique also helps us discover a few similar but unknown �aws
(Section 6.5).

4 SEMANTIC INFORMATION RETRIEVING
As mentioned earlier, semantic information (including a�ected ver-
sion, vulnerability type, vulnerable functions, critical variables and

system calls) all comes from the text content of CVE and Linux git
log 3. Such content is in natural language, without a well-de�ned
structure. �erefore, direct extraction of knowledge, through syn-
tactic means such as regular expression based string match, does
not work well, due to the semantic ambiguity of some content com-
ponents. As an example, “read” can be a verb (e.g., in the phrase
“bu�er over read”) or a noun (e.g., in the sentence “by a read system
call”). Also, the simple approach (string matching) fails to consider
the dependency relations between words in a sentence. For exam-
ple, in the sentence “the whole skb len is dangerous”, the word “skb”
modi�es “len”, indicating that len is a �eld in the skb structure.
To accurately recover such target information, we utilize Natural
Language Processing (NLP) techniques, including Part-of-Speech
(POS) Tagging, Phrase Parsing and Syntactic Parsing. Speci�cally,
SemFuzz builds a parse tree to recognize the POS tag of each word
and to identify the syntactic clause in a sentence for semantic anal-
ysis. Using these techniques, we show that target vulnerability
information can be accurately identi�ed. Below we elaborate how
our approach works.
Generating parse tree. �e parse tree is an ordered, rooted tree
that represents the syntactic structure of a sentence according to a
Context-Free Grammar (CoFG) [30]: the root of the parse tree is
labeled as the start of the tree; interior nodes are labeled as non-
terminals (e.g., “VP” for verb phrase, “NP” for noun phrase, etc.),
representing syntactically correlated word sequences or phrases;
and the leaves of the tree are labeled as terminals (e.g., “JJ” for
adjective, “NN” for noun, etc.), representing individual words of
this sentence.

In our research, we use the NLP tool pyStatParser [18] to learn
the Probabilistic Context-Free Grammar (PCoFG) from the Penn
Treebanks [40] and generate a parse tree for each sentence in the
CVE and git log. Figure 2 shows part of a parse tree for a sentence in
the git log of CVE-2017-6347. �e root of the tree is “S”, representing
a sentence. �e le� child of the root is a noun phrase (NP), and
the right child of the root is a verb phrase (VP). We can see that
concatenating the leaves from le� to right constitutes the whole
3Contents from CVE and git log are o�en complementary. For example, system calls
usually appear only in CVE while critical variables are commonly in git log.

sentence “the whole skb len is dangerous”. �e parent node of each
leaf (i.e., the word in the sentence) is the word’s POS tag. Using the
parse tree, SemFuzz can understand the meaning of each word and
the relationship between those words. For example, when SemFuzz
checks the noun phrase in a subtree, it will �nd that the word skb as
an adjective describes the noun len, which further helps SemFuzz
to �nd out that len is a �eld of the structure skb (see “Retrieving
critical variables” in this Section). At this time, SemFuzz is ready to
retrieve necessary information for fuzzing.
Retrieving a�ected version. A�ected version is the Linux kernel
version that contains the given CVE vulnerability, which is nec-
essary for SemFuzz to set up the execution environment. In most
cases, it is in the form of “Linux kernel 4.10.11” or “kernel 4.1”. Note
that such version information cannot be directly acquired from git
log commit id, since it only gives the release candidate version (e.g.,
4.10-rc8) but not the speci�c release version (e.g., 4.10.1). To extract
the release version, SemFuzz �rst identi�es the version number with
the following regular expression: “ˆ\d(\.\d{1,2}){0,2}(\.x){0,1}”,
which could match words like “4.1”, “4.1.1”, “4.x” and “4.1.x”. �en
SemFuzz locates the clause containing the version number in the
parse tree and checks whether it also includes the term “Linux” or
“kernel”. If so, SemFuzz views the version number as the a�ected
version. Otherwise, the version number may belong to other ap-
plications (e.g., “gcc 4.1”). Sometimes, a preposition can be found
before the version number (e.g., “before 4.10.2”). In this case, we
use the nearest version that meets the condition (e.g., “4.10.1” here).
Note that it is also possible that two version numbers are in the
same clause (e.g., “Linux kernel 4.4.22 through 4.4.28”). In this case,
we choose the latest version number among the two as the a�ected
version (i.e., “4.4.27” in this case). In this way, the a�ected version
can be successfully identi�ed.
Retrieving vulnerability type. Vulnerability type indicates the
anomalous event that SemFuzz needs to observe in the fuzzing
process. Examples of the vulnerability type include “use a�er free”,
“double free”, “memory consumption”, etc. To retrieve such infor-
mation, we �rst de�ne a list of candidate types and try to �nd them
in the content of CVE and git log. Speci�cally, to de�ne the can-
didate types, we use the Common Weakness Enumeration (CWE),
which is a community-developed list of common so�ware security
weaknesses [10]. It commonly serves as a baseline for weakness
identi�cation, mitigation, and prevention e�orts. �ere are about
70 types of Linux kernel related CWEs in total, and we select 16
of them as shown in Table 1. �en SemFuzz looks for the CWE in
the clauses identi�ed by the parse tree. SemFuzz only focuses on
NP (noun phrase) of the parse tree, where CWEs are most likely to
appear. Once the vulnerability type cannot be retrieved from the
parse tree, SemFuzz tries to retrieve National Vulnerability Data-
base (NVD) [17] using the CVE number as the keyword. From the
Technical Details �eld in the search results, SemFuzz can get
the vulnerability type.
Retrieving vulnerable functions. A vulnerable function con-
tains vulnerable code, which is the patched function in the git log.
Identifying vulnerable function helps SemFuzz to set up the muta-
tion strategy on inputs, which further increases the performance
of fuzzing. To retrieve such a function, SemFuzz compares the un-
patched version of the Linux kernel with the patched one (indicated

in the git log), and locates the revised functions as the candidate
vulnerable functions. We further locate the real ones based on the
following observation: (1) if a patched function is also mentioned
in the CVE description, this function is more likely to be the vul-
nerable function; (2) if a variable mentioned in the CVE description
or patch description, it is more likely to be related to the vulnera-
ble function. �erefore, SemFuzz �rstly searches for the name of
patched functions in the parse tree, and treats the one discovered as
the vulnerable function. If nothing is found, SemFuzz compares the
nouns in the parse tree with the variables in the patched functions.
Any match is considered to be the vulnerable function. For example,
in Figure 2, only the ip cmsg recv checksum function is mentioned
in CVE, it is treated as the vulnerable function.
Retrieving critical variables. We de�ne a variable as a critical
variable if it meets the following two conditions: (1) it appears in a
(unpatched) vulnerable function; and (2) is also mentioned in the
description of CVE or git log. �e critical variable is closely related
to the vulnerability, and may even be the root of the vulnerability. In
the example shown in Figure 2, “skb.len” is the critical variable. To
locate such variables, SemFuzz �rst extracts all the variables from
an unpatched vulnerable function, and builds a symbol table which
contains the variables and their type information. �en, SemFuzz
checks whether any variable in the symbol table also appears in the
clauses in the parse tree. Note that a variable must be a noun or an
adjective in a phrase. SemFuzz will not consider words with other
POS, such as the preposition or subordinating conjunction. When
a word indicating a structure variable modi�es the other word (e.g.,
in “skb.len”, skb modi�es len), SemFuzz will search the structure to
�nd the most likely �eld that matches the modi�ed word 4.
Retrieving system calls. As mentioned previously, system calls
play a vital role in our fuzzing of Linux kernel. Most vulnerable
functions inside the kernel are triggered by system calls. One may
consider randomly selecting di�erent system calls for fuzzing. How-
ever, considering there are around 400 system calls with more than
1500 parameters, the search space of the call combinations, together
with their parameters, is too large for �nding the right input to
trigger the vulnerability. A randomly selected sequence of system
calls (also with randomly selected values of parameters) as inputs
is almost always impossible to trigger the vulnerability. A�er man-
ually checking more than 100 CVEs and their corresponding Linux
git logs, we �nd that each system call mentioned in CVE or git
log may either trigger the vulnerable function or set up the run-
ning environment that is necessary for triggering the vulnerability.
�erefore, correctly retrieving system calls from the description of
CVE or git log will greatly improve the performance of the fuzzing.

One simple idea to retrieve system calls is to get the list of Linux
system call names and look for them in the description. However,
this approach may miss a large amount of valuable information.
For the example in Section 3, the content mentions no name of any
system call. But the three keywords (“MSG MORE”, “loopback”,
“UDP”) in the content can actually help readers to recall the sys-
tem call sendto and the system call socket due to the correlation

4In the rare case that the semantics of the �elds is given in natural language (e.g.,
“length” for “len”), we can still capture them from their comments in the structure,
which are o�en there (e.g., structure sk bu� has a comment “@len: length of actual
data”).

Figure 3: Example of collecting system call information from Linux Programmer Manual.

between them. To build such correlation, our idea is to customize
NLP for recovering syscall-related information. Particularly, we
built a knowledge base (the relations among system calls and their
parameters) for correlating the keywords in CVE or git log descrip-
tions to domain-speci�c concepts (e.g., linking MSG MORE to the
flags parameter of the sendto system call). Below we elaborate
the details of our approach.

SemFuzz �rst correlates a system call with its return type and
the types of parameters. If the type is an enumeration, the values
of parameter should also be included. Such correlation can be auto-
matically achieved by parsing Linux Programmer Manual (LPM)
[16] which contains the prototype of every Linux system call 5. A
prototype is a declaration of a function that speci�es the function’s
name, number of parameters, data types of parameters, and return
type. �e format of a declaration is �xed, and it always appears in
the SYNOPSIS �eld in LPM. For parameters of the enumeration type,
all possible enumeration values are presented in the DESCRIPTION
�eld in LPM. What SemFuzz needs to do is to parse all the doc-
uments of LPM, extracting the prototype of system calls and the
enumeration values of parameters. An example is shown in the
le� part of Figure 3, which is a manual page for the system call
sendto. From the �gure, we can see that the system call sendto
has six parameters, as shown in the SYNOPSIS �eld. �e parameter
flags is an enumeration with values show in the DESCRIPTION
�eld (e.g., MSG MORE). Each value of the enumeration is connected
to sendto. Also the parameter dest addr is a pointer to sockaddr.
�e structure sockaddr and its �elds (which are extracted from the
code) are related to sendto.

Besides correlating a system call with its prototype and possi-
ble enumeration values, SemFuzz also checks the SEE ALSO �eld

5One may think about ge�ing system call prototype from the header �les. However,
header �les do not have information about system call dependencies and the values of
parameters and their relations. For example, MSG MORE can only be used in sendto
a�er calling socket (to establish connection). Such information cannot be found from
header �les.

in LPM, which usually contains other information (e.g., the pro-
tocol that a system call may use). For example, in Figure 3, the
SEE ALSO �eld of the sendto system call includes other LPM pages
such as tcp, udp and ip. �ese pages describe the related val-
ues of system calls’ parameters. Generally, two �elds need to be
taken care. �e �rst one is the SYNOPSIS �eld, which gives typical
sample code of system calls with speci�c values of its parame-
ters. SemFuzz connects the page’s name (e.g., ip and udp) with the
contents in SYNOPSIS. In the example of udp (see bo�om-right of
Figure 3), SemFuzz correlates the keyword udp with the system
call “socket(AF INET, SOCK DGRAM, 0)”. �e second �eld is the
DESCRIPTION �eld in the page. Sometimes, it gives special values
of critical structures. For example, in the ip page (see top-right of
Figure 3), SemFuzz recognizes INADDR LOOPBACK is a special value
of the ip address, which can be used to �ll the dest addr parameter
of the sendto system call. A�er analyzing all the pages in this way,
SemFuzz is able to retrieve a system call and its parameters when its
keyword is identi�ed in the leaves of the parse tree with POS label
NN (i.e., noun). Recall that UDP is used in the CVE description (see
Figure 2), SemFuzz can generate the system call with its parameters
as follows: “socket(AF INET, SOCK DGRAM, 0)”.

SemFuzz also correlates a system call with other system calls. As
we know, the parameters of a system call A may be the return value
of another system call B. As a result, only a�er B is executed, A can
run with the output of B. SemFuzz bridges the correlations between
two system calls when the parameter name of a system call equals
the name of another system call’s return variable. In this way, when
a system call is identi�ed from the description of CVE or git log,
any correlated system calls could also be included. Note that this
operation may map one keyword to several system calls. Once this
situation happens, SemFuzz selects the system call that can cover
the most keywords. For example, the �rst parameter of the system
call sendto is sockfd, which equals the name of the return variable
of the system call socket and the system call accept. Compared

Figure 4: Setting up testing environment.

with accept, socket can cover more keywords (e.g., udp). In that
case, when sendto is retrieved, socket should also be extracted.

Using this approach, SemFuzz automatically analyzes 1082 LPM
pages, and correlates 373 system calls with more than 2000 key-
words, which is �ve more times than only using system call names
as the keywords. From our evaluation of 112 CVEs, SemFuzz can
successfully retrieve the system calls for 96 (86%) of them for further
fuzzing.

5 SEMANTICS-GUIDED FUZZING
SemFuzz extracts necessary information, or guidances, from non-
code text in CVE and Linux git log, to guide the fuzzing process.
Particularly, the retrieved “a�ected version” helps SemFuzz to set
up the right testing environment. �en SemFuzz generates the �rst
input (i.e., the seed input) using the retrieved “system calls”. In
the fuzzing process, SemFuzz performs a coarse mutation on the
inputs to �nd a system call sequence that can move the execution
towards the “vulnerable functions”. A�er that, SemFuzz continues
to perform a �ne-grained mutation on the system call sequence by
monitoring the “critical variables”, until the target vulnerability is
found to be triggered, according to the signs of the a�ack result
speci�ed by the “vulnerability type”.

5.1 Setting up the Testing Environment
�e tasks of se�ing up the testing environment include: running
the vulnerable Linux kernel version and observing the execution
status of the Linux kernel. �e �rst task is to load a vulnerable
Linux kernel and make a sequence of system calls. As we know,
a kernel cannot load itself, so we build a Linux kernel inside a
virtual machine and let SemFuzz load it from outside (i.e., on the
host machine), as shown in Figure 4. In particular, we pre-build
103 Linux kernel versions to avoid the redundant building for time
saving. When the “a�ected version” is retrieved from the CVE
description, the out-box loader of SemFuzz loads the corresponding
version. �en the in-box feeder of SemFuzz feeds the target kernel
with a sequence of system calls. Such feeding can be achieved by
a user-level application installed in the Linux operating system
(inside the virtual machine). What the application does is to invoke
system calls according to the given system call sequence.

�e second task is to observe the execution status of the kernel,
including the executed functions, values of critical variables and

the abnormal events of the kernel, which is essential for feeding
back to SemFuzz as the further guidance of the input mutation.
Similar to the �rst task, SemFuzz works both inside and outside the
virtual machine. (a) To monitor the executed functions, an in-box
observer of SemFuzz leverages system support called KCOV (kernel
code coverage) [3], which is designed to track the executed code in
Linux kernel. (b) Tracking the critical variables in kernel is much
more complicated than expected. One idea is to add instrumenta-
tion code around the variable in the source code. When the code
runs, it gives the value of the variable. However, this approach is
not �exible since the kernel has to be recompiled each time when
SemFuzz needs to observe a di�erent variable. One may also think
of dynamic instrumentation which, in runtime, locates the target
variable and instruments code around it. However, such variable
may not be locatable since it would get optimized out when the ker-
nel is compiled. To solve this problem, our basic idea is to observe
the parameters of a kernel function instead of the critical variables.
Compared with a variable inside a kernel function, function pa-
rameters will not be optimized out. In detail, we statically perform
backward intra-procedure data-�ow and control-�ow analysis on
the critical variables, trying to �nd the parameters that the critical
variables depend on. For example, in Figure 2, the variable skb.len
is the critical variable retrieved from CVE, which data depends on
the function parameter skb. So SemFuzz dynamically instruments
the parameter skb in the function ip cmsg recv checksum. When
the function is invoked, the value of the parameter can be obtained.
(c) To capture an abnormal event (e.g., memory corruption) of the
kernel, SemFuzz lets the out-box observer watch the kernel outside
the virtual machine. Once an abnormal event happens, SemFuzz
will be alerted.

In our implementation, we built SemFuzz based on the state-of-
the-art Linux system call fuzzer, called Syzkaller [4]. Regarding
the in-box observer, Syzkaller can directly call the API of KCOV and
gets the execution status of the kernel. Besides this, Syzkaller can
perform the fuzzing by randomly adding, removing or changing a
system call together with its parameter(s) in the sequence. We im-
plemented the seed input generation and the strategy of mutating
the seed input according to the non-code text in CVE and Linux
git log (see Section 5.2, 5.3 and 5.4), which greatly improves the
performance of fuzzing for over 1.6 times (see Section 6.3). As for
out-box observer, Syzkaller monitors whether the kernel crashes
or hangs, and also checks the output of the internal kernel error
detectors (e.g., KASAN for detecting memory errors and UBSAN for
detecting unde�ned behaviors such as integer over�ow). SemFuzz
retrieves the report of Syzkaller to check whether the behavior spec-
i�ed by the target vulnerability type occurs (e.g., KASAN generates
a bug report “KASAN: Double free or freeing an invalid pointer”,
indicating the double free vulnerability is triggered).

5.2 Generating Seed Input
Before starting the fuzzing process, an initial seed input should be
generated. A good seed input can move the execution of the target
kernel closer to the vulnerable function, improving the performance
of the later mutation process. Di�erent from randomly generating
a seed input by traditional fuzzing approaches, SemFuzz leverages
“system calls” retrieved from CVE and git log. Although such system

Figure 5: Reverse call graph of ip cmsg recv checksum. For
brevity, we only present the important functions in the
graph.

calls are highly related to the vulnerability, they are insu�cient for
building the whole input to trigger the vulnerability by themselves.
�us, other necessary information should also be included to build
a suitable seed input. For example, using the description of CVE-
2017-6347, SemFuzz generates the system calls socket and sendto.
However, between executing socket and sendto, the system call
bind must be executed to assign a local socket address to the socket.
Particularly, the seed input is built through the following two steps.
Firstly, all the retrieved system calls (along with the retrieved values
of parameters) are put together as an incomplete seed input. If
the parameter is a structure, we �ll each �eld in the structure.
For enumeration �elds, we �ll them with the related enumeration
values learned from LPM. For other �elds, we populated them with
random values compatible with their types. Secondly, SemFuzz
correlates other system calls with the retrieved ones, and puts them
into the seed input. As mentioned in Section 4, SemFuzz correlates
two system calls if one’s parameters are returned from another one.
Here, we further extend such correlation to the system calls that
share the same type of system resources (e.g., �les, sockets). In
this way, all the related system calls are put together in the seed
input. Although this may bring some useless system calls to trigger
the vulnerability, it increases the probability to hit the vulnerable
functions.

5.3 Coarse-level Mutation
�e goal of this step is to generate an input that could let the
execution reach the vulnerable function. Di�erent from symbolic
execution that generates inputs by solving the constraints on the
path from the program start to the vulnerable function, fuzzing
achieves this in a “mutate-and-check” way, that is, continuously
mutating inputs and checking whether the vulnerable function
is reached. In this way, a good strategy of mutation can greatly
increase the fuzzing speed. Our idea is to leverage the guidance
“system calls” and “vulnerable functions”. We start with the seed
input and mutate it for fuzzing. We refer to each running using
an input as a fuzzing instance. �en for each instance, we observe
the execution of Linux kernel through the in-box observer, and

measure the distance between the vulnerable functions and the
execution trace of the fuzzing instance. �e input corresponding
to the shortest distance is chosen as a new seed input for another
round of fuzzing until any vulnerable function is reached.

Formally speaking, let VUL be the set of vulnerable functions.
Given a vulnerable function f ∈ VUL, we construct its reverse call
graph by performing backward reachability analysis on f . Partic-
ularly, we modify GCC to collect call information during kernel
compilation. We consider function pointers but ignore callbacks 6.
�e caller is linked to all candidate callees having the same pro-
totype speci�ed by the function pointer under a path-insensitive
and context-insensitive pointer analysis. In the generated graph,
each node represents a function that can reach f , and each edge
connecting two nodes n1 and n2 means that n2 is directly called by
n1. We de�ne the distance of two nodes dist(n1,n2) as the number
of the nodes in the shortest path between n1 and n2. A special
situation is that, when n1 == n2, the dist equals to 1. Let RCG(f)
be the set of functions in the reverse call graph of f , KCOV (s) be
the set of functions that are executed in a fuzzing instance using
the input s . For ∀д ∈ KCOV (s), we de�ne its priority prio to f as:

priof (д) =
{

1/dist (д, f) , i f д ∈ RCG (f)
0, otherwise

�en, the priority of the system call sequence s is de�ned as:

prio (s) =maxf ∈VU L
{
priof (д) | д ∈ KCOV (s)

}
In this way, the priority of a candidate system call sequence is
represented in the range [0, 1], where 0 means the system call
sequence is not likely to reach the vulnerable functions, while 1
means the system call sequence reaches to the vulnerable functions.

For the case of CVE-2017-6347, the vulnerable function is ip cmsg
recv checksum, whose reverse call graph is shown in Figure 5.

Consider two system call sequences s1 and s2. �e former one s1 can
reach the function udp recvmsg, whose distance to the vulnerable
function is 3, hence prio(s1) = 1/3. �e la�er one s2 can reach the
function inet recv error, whose distance to the vulnerable function
is 4, hence prio(s2) = 1/4. By comparing prio(s1) and prio(s2), we
prefer to choose s1 instead of s2 as the candidate input for further
mutation.

5.4 Fine-grained Mutation
A�er �nding an input I that lets the kernel run the vulnerable
function, SemFuzz continues to mutate the input with the feedback
from monitoring the “critical variables”. Basically, SemFuzz does
not add new system calls or delete any existing system calls in
I . What SemFuzz does is to mutate the values of the system call
parameters, and to repeat existing system calls, which is then called
�ne-grained mutation. Regarding observing the “critical variables”,
recall that the in-box observer cannot directly monitor the changes
of critical variables (Section 5.1). So SemFuzz only observes the
function parameters that the critical variables depend on, to check
whether the values are impacted when a given input is executed.

Similar to the coarse-level mutation, SemFuzz needs to determine
whether an input is “be�er” than others. If so, the input will be
6�is may cause some links between function calls missing.

1 int r0 = syscall(__NR_socket , AF_INET , SOCK_DGRAW , 0);
2 syscall(__NR_setsockopt , r0,);
3 syscall(__NR_bind , r0, lookback ,....)
4 int r1 = syscall(__NR_socket , AF_INET , SOCK_DGRAW , 0);
5 syscall(__NR_sendto , r1, NULL , 0, MSG_MORE , loopback);
6 syscall(__NR_sendto , r1, buff , buff_size , 0, loopback);
7 syscall(__NR_poll ,);
8 syscall(__NR_recvfrom , r0, ..., loopaddr);

Figure 6: �e sequence of system calls to trigger CVE-2017-
6347.

selected and used for future mutations. We measure the input
quality using the distance between basic blocks. As we know, a
basic block is a sequence of instructions with no branches in except
to the entry and no branches out except at the exit [25]. A function
can be represented as a control �ow graph, in which each node
is a basic block and each edge between two basic blocks indicates
there is a control �ow relationship between them. We measure the
distance between two basic blocks (b1 andb2) by the number of basic
blocks in the shortest path from b1 to b2, denoted as distB (b1,b2).
A special situation is that, when b1 == b2, the distB equals to 1. In
this way, we can de�ne the priority of an input as follows.

Given a vulnerable function f ∈ VUL with an entry point e .
Suppose the patched code of function f is in the set of basic blocks
PATCH = {p1,p2, ...,pn }. LetKCOVB (s) be the set of covered basic
blocks in a system call sequence s . For ∀b ∈ KCOVB (s), we de�ne
its priority prio′ to a patched block p ∈ PATCH as:

prio′p (b) =
{ distB (e,b) × 100
distB (e,b) + distB (b,p) − 1 , i f e { b and b { p

1, otherwise

where e { b means there is a path from the entry e to the basic
block b, and b { p means there is a path from the basic block b to
patched basic block p. �e priority of the system call sequence s is
de�ned as:

prio′ (s) =maxf ∈VU L,p∈PATCH
{
prio′p (b) | b ∈ KCOVB (s)

}
From this de�nition, the priority of a given system call sequence
can be represented in the range [1, 100], where 1 means the patched
code is less likely to be reached, while 100 means the patched code
is reached. �e higher the value, the more likely that the patched
code could be reached. SemFuzz chooses the input that has the
highest value for further fuzzing.

We take CVE-2017-6347 as an example. �e critical variable of
the vulnerable function ip cmsg recv checksum is skb.len, where
skb is the parameter of the function. Consider two system call
sequences s1 and s2. �e former one can reach a basic block whose
distance to the function entry is 95 in a path with distance 100
(from the function entry to the patched basic block). �en the
prio′(s1) = (95/100) × 100 = 95. �e la�er one s2 can reach a basic
block whose distance to the function entry is 90 in the same path.
�en the prio′(s2) = (90/100)× 100 = 90. �us, we prefer to choose
s1 instead of s2 for �ne-grained mutation. We randomly select a
mutation operation on s1 to generate a new system call sequence

s ′1. When executing s ′1, we observe the len �eld of the skb parame-
ter. If its value is changed, we prioritize the selected operation in
further mutations. Figure 6 shows a system call sequence in the
�ned-grained mutation process. For brevity, we omit some tedious
parameters in the �gure, and use loopback to present the sock addr
structure assigned with the loop back address (i.e., 127.0.0.1). �e
feedback from the in-box observer indicates that by mutating the
parameter bu� of the system call sendto (line 7), the skb.len will
be impacted. So SemFuzz focuses on such a mutation and �nally
triggers the vulnerability when the bu� argument is ful�lling with
more than 512 bytes data.

6 EVALUATION AND FINDINGS
In this section, we evaluate the e�ectiveness and performance of
SemFuzz. Also included is the evaluation on the accuracy of the
retrieved information using natural language processing, which
supports the high performance of SemFuzz. Interestingly, two
unknown vulnerabilities were found in this process, which were
presented in the case study. We demonstrate that the leaked in-
formation from CVE and Linux git log could help a�ackers to
automatically generate PoC exploits.

6.1 Settings
CVEs and Linux git logs. We collected the CVEs in last �ve
years that target x86/x86 64 Linux kernel from version 4.0 to the
latest version 4.11. We �ltered out the vulnerabilities that require
speci�c devices to trigger (e.g., CVE-2016-2782 requires a speci�c
USB device that lacks a bulk-in or interrupt-in endpoint) and the
logical vulnerabilities whose abnormal behaviors cannot be directly
observed (e.g., bypass the intended �le system access restriction as
shown in CVE-2015-8660). Finally, we got 112 CVEs, which covers
the most common vulnerability types (e.g., double free, use-a�er-
free, bu�er over-read and bu�er over�ow, etc., as shown in Table 1)
and various subsystems (e.g., networking, �le system, keys, etc.) of
the Linux kernel. For each CVE, we collected the corresponding
Linux git log, including the log message and patching code.

We compiled 103 versions of Linux kernel from 4.0 to 4.11 with
the allyesconfig con�guration while opting out the test modules
that may crash the kernel. To support the code coverage collection,
we enabled the KCOV functionality, which was introduced into the
kernel since version 4.6. We ported the KCOV functionality to the old
kernels before 4.6. We also enabled internal kernel error detectors
(e.g., KASAN detector and the UBSAN detector) to enhance the ability
of SemFuzz in capturing abnormal behaviors.
Computing environment. All the experiments were run on a 64-
bit Ubuntu server with 40 cores (2.3GHz Intel®Xeon®CPU E5-2650),
256GB memory and 70TB hard drive. For each CVE, the fuzzing
process continued for 48 hours or until the given vulnerability is
successfully triggered.

6.2 E�ectiveness
E�ective of exploit generation. We evaluated the number of
CVEs from which SemFuzz successfully generates the PoC exploits,
indicating the e�ectiveness of this end-to-end approach. Further, we
made a deep analysis on the rest CVEs to check why SemFuzz does

Table 2: Precision and recall of semantic information re-
trieving.

Information TP FP FN TN Precision Recall
A�ected Version 112 0 0 0 100.00% 100.00%

Vuln. Type 112 0 0 0 100.00% 100.00%
Vuln. Functions 95 16 0 1 85.59% 100.00%

Critical Variables 33 7 5 67 82.50% 86.84%
System Calls 70 13 3 26 84.34% 95.89%

not trigger the vulnerabilities. �is gives us further understanding
on both our approach and the descriptions of CVEs/Linux git logs.

SemFuzz successfully generated PoC exploits for 18 (16%) CVEs,
including use-a�er-free, null pointer deference, bu�er over-read,
etc. �e details of these 18 CVEs are shown in Table 4 in Appendix.
�e a�ected Linux versions and vulnerable functions are correctly
pointed out. Interestingly, we note that only 5 of the 18 CVEs have
been studied and the corresponding exploits were released on the
Internet, which shows that most of the exploits are not generated or
only owned by very few a�ackers. We then compared the exploits
from Internet and ours. Actually, we �nd the sequences of system
calls between them are not the same. Neither the values of the
parameters. One reason is that the vulnerable function can be
triggered in di�erent execution traces.

For the rest 94 CVEs, we analyzed the intermediate results. We
found 49% (46/94) of them give correct inputs that can lead the
execution to the vulnerable functions. 20% (19/94) of them give
correct inputs that can even let the execution run to the patched ba-
sic block in the vulnerable functions. We manually examined why
SemFuzz does not generate PoC exploits for these CVEs and found
that it is mainly due to two reasons. Firstly, some vulnerabilities
can only be triggered when the inputs (especially the parameters
of system calls) meet some speci�c conditions, which is hard for
SemFuzz to generate in limited time. Secondly, some vulnerabilities
are only possible if race conditions can occur. Still SemFuzz needs
more time to trigger such conditions due to non-determinism of
concurrent executions. Researches on augmenting fuzzing through
selective symbolic execution [52] and manipulating thread schedul-
ing [29, 58] could help further improve the performance of SemFuzz.
E�ective of semantic information retrieving. In this part, we
measured whether the extracted semantic information is accurate
and whether there is any important information missed by our
natural language processing. �is evaluation was performed for
each guidance. In general, we compared the retrieved information
with manually retrieved ones from the descriptions of CVEs and
Linux git logs, and computed the precision and recall. Details are
elaborated in Table 2.

For “a�ected version” and “vulnerability type”, we found the
extracted information is very accurate, with 100% precision and
100% recall. �at is, our NLP-based approach can correctly retrieve
the a�ected version and vulnerability type from all the CVEs. For
the “vulnerable functions”, SemFuzz can always �nd them by com-
paring the patched code with the original one (i.e., with 100% recall).
Considering some of the identi�ed “vulnerable functions” may not
be related to the vulnerable code, we manually checked them on

Table 3: Performance evaluation.

CVE Reach Vuln. Function Trigger Vulnerability
SemFuzz Syzkaller SemFuzz Syzkaller

CVE-2015-0275 0.12 h >48.00 h 3.31 h >48.00 h
CVE-2015-1333 2.73 h 8.68 h 8.17 h 37.26 h
CVE-2015-5706 0.07 h 0.29 h 0.10 h >48.00 h
CVE-2015-6937 9.18 h 16.33 h 11.64 h >48.00 h
CVE-2015-7872 4.16 h 6.11 h 12.32 h 27.61 h
CVE-2015-7990 3.29 h 9.82 h 4.72 h 21.54 h
CVE-2016-0728 0.06 h 0.39 h 6.97 h 42.81 h
CVE-2016-10147 5.63 h 17.89 h 31.96 h >48.00 h
CVE-2016-3134 1.92 h >48.00 h 29.35 h >48.00 h
CVE-2016-3841 0.03 h 0.18 h 9.44 h >48.00 h
CVE-2016-4482 0.01 h >48.00 h 0.04 h >48.00 h
CVE-2016-4794 0.08 h 0.17 h 5.51 h 26.84 h
CVE-2016-6213 0.11 h 2.03 h 16.53 h >48.00 h
CVE-2016-8646 3.56 h 8.87 h 38.29 h >48.00 h
CVE-2016-9555 0.47 h >48.00 h 23.16 h >48.00 h
CVE-2016-9793 0.01 h 0.14 h 17.05 h >48.00 h
CVE-2017-6074 1.13 h 1.65 h 10.91 h 39.12 h
CVE-2017-6347 0.10 h 0.42 h 7.76 h 41.83 h

such relationship. �e results show that 85.59% of the identi�ed
vulnerable functions have relation to the vulnerable code. For the
“critical variables”, we evaluated our NLP tool (for extracting the
variables) by manually comparing the descriptions with the vari-
ables identi�ed. �e results show that the precision is 82.5% and the
recall is 86.84%, which means our NLP-based approach can provide
precise guidance of the critical variables.

To measure the precision and recall of “system calls”, for each
vulnerability, we �rst manually analyze its CVE and git log de-
scriptions to extract the necessary system calls (for triggering the
vulnerability) as the ground truth (S1). �en we compare whether
the retrieved “system calls” by our NLP tool (S2) consist with S1.
For a system call in S2 but not in S1, we treat it as a false positive. If
a system call is correctly identi�ed but with wrong parameter value,
we also treat it as a false positive. On the other hand, if a system call
is in S1 but not in S2, we treat it as a false negative. Also, if a system
call is correctly identi�ed but the parameter value speci�ed in S1
is not retrieved in S2, we treat it as a false negative. Based on this,
the precision is 84.34% and recall is 95.89%. A�er further analyzing
the descriptions, we found that the main reason of false positive is
that the names of some system calls are ambiguous. For example,
CVE-2016-7915 says “by connecting a device”. SemFuzz mistakes
the word “connecting” as a connect system call. However, the
verb “connect” here actually does not indicate the connect system
call since the object of the verb is “a device”, which is irrelevant
with network communication. �e main reason of false negative is
the missing of connection between the value of parameter and its
description. For example, CVE-2015-8539 says “via cra�ed keyctl
commands that negatively instantiate a key”. From the semantics
of “negatively instantiate a key”, an experienced analyst is able
to infer that the value of the parameter operation in the system

(a) Impact of “vulnerable functions”. (b) Impact of “critical variables”. (c) Impact of “system calls”.

Figure 7: Impact of di�erent guidances.

call keyctl is KEYCTL NEGATE. SemFuzz does not build the con-
nection between the keyword KEYCTL NEGATE and its description
“negatively instantiate a key”, which could be identi�ed once the
description is parsed in the future.

6.3 Performance
We measured the performance of SemFuzz and compared it with
the o�cial version of Syzkaller [4], a state-of-art Linux system call
fuzzer. �e default con�guration of Syzkaller is to randomly select
system calls to test. To be fair, for each vulnerability, we con�g-
ure Syzkaller to test the system calls correlated to the vulnerable
subsystem. For example, if the vulnerability is in the networking
subsystem, we enable Syzkaller to test all network-related system
calls.

Table 3 gives the results. For the 18 CVEs, the average time for
SemFuzz to generate a PoC exploit is 13.2 hours. As a compassion,
Syzkaller can only generate exploits for 7 CVEs. Further, we ana-
lyzed the time consumption in each stage in the fuzzing process.
�e time for SemFuzz to extract information and prepare for the
�rst seed input is less than 0.1 seconds, which is negligible com-
pared to the later fuzzing process. For Syzkaller, it does not need
this step. �en we measured the time needed to generate the �rst
input that could let the execution reach the vulnerable function. On
average, it takes SemFuzz 1.8 hours in this step. Syzkaller can only
generate such inputs for 14 CVEs within the time limit, and the
average time is 5.2 hours, which is 1.9 times slower than SemFuzz.
�e last step is to mutate the input to trigger the vulnerabilities,
which takes SemFuzz 13.2 hours. Still, Syzkaller can only handle 7
vulnerabilities with the average time of 33.9 hours (1.6 times slower
than SemFuzz). From the analysis, we found our coarse-level and
�ne-grained mutation strategies are very helpful, mainly due to the
semantic information from CVEs and git logs.

6.4 Findings
We explored to understand the relationship between guidances and
the PoC exploits. To this end, we studied the existence of guidances
and its impact on the automatic PoC exploit generation of SemFuzz.
�is understanding helps to release a CVE and git log without
facilitating potential a�ackers to automatically generate exploits.
We also found two unknown vulnerabilities in the fuzzing process,
which have already been con�rmed by the Linux kernel developer
group.

Guidances and the exploits. For the �ve guidances, “a�ected
version” and “vulnerability type” can always be found in CVE and
git log. Hence, we focus on the rest three guidances (i.e., the vulner-
able functions, critical variables and system calls). Figure 7 (a)-(c)
shows the impact of each guidance.

Figure 7(a) shows how the “vulnerable functions” a�ects the ex-
ploit generation. Interestingly, more vulnerable functions decrease
the possibility to generate a vulnerability. Note that vulnerable
functions are those touched by a patch. However, likely only one
of them is exploitable. In other cases, these functions may need to
be invoked in a certain order to reach the vulnerability. Either way,
the problem here is more complicated (than a single vulnerable
function), making the underlying vulnerability harder to trigger.
For the 18 CVEs from which SemFuzz generates PoC exploits, 13 of
them have only one vulnerable function. �e mutation processes
of them are more concentrated.

Figure 7(b) demonstrates how the “critical variables” a�ects the
exploit generation. In the �ve cases (i.e., CVE-2015-5706, CVE-
2016-0728, CVE-2016-6213, CVE-2016-8646, and CVE-2016-9555),
when the critical variable is missing, the PoC exploits can still be
generated. When there is only one critical variable, the number of
generated PoC exploits is maximized. More critical variables will
decrease the number of PoC exploits, similar to our observations
of “vulnerable functions”.

Figure 7(c) gives the ratio of successful exploits using only system
calls and using both system calls and the values of their parameters.
From the �gure, we �nd that the success rate is higher by using both
system calls and the values of their parameters than by only using
the system calls alone. We further compare the time to generate
PoC exploits between the two situations, and �nd that using system
calls together with values of parameters are faster, mainly due to
that there is no need to mutate the parameters to �nd the correct
parameter values.

To summarize, the three guidances (“vulnerable functions”, “crit-
ical variables” and “system calls”) are necessary for generating an
exploit. To release a CVE in a way which is less likely for a�ackers
to generate exploits, one idea is to decrease the number of guid-
ances, such as only disclosing the related system calls but not the
speci�c values for triggering the vulnerability. Another idea is, on
the contrary, to increase the number of “vulnerable functions” and
“critical variables” by mentioning more related functions and vari-
ables in the description, which can confuse a�ackers and further
to impede the automatic exploit generation. Considering CVE is

1 syscall(__NR_mmap , 0x20000000ul , 0xf000ul , 0x3ul ,
2 0x32ul , 0xfffffffffffffffful , 0x0ul);
3 *(uint32_t *)0x20000000 = (uint32_t)0x6;
4 *(uint32_t *)0x20000004 = (uint32_t)0x4;
5 *(uint32_t *)0x20000008 = (uint32_t)0x54d1;
6 *(uint32_t *)0x2000000c = (uint32_t)0xc93;
7 syscall(__NR_bpf , 0x0ul , 0x20000000 , 0x10ul ,
8 0, 0, 0);

(a) �e sequence of system calls to trigger CVE-2016-4794.

1 syscall(__NR_mmap , 0x20000000ul , 0x2000ul , 0x3ul ,
2 0x32ul , 0xfffffffffffffffful , 0x0ul);
3 *(uint32_t *)0x20000000 = (uint32_t)0x6);
4 *(uint32_t *)0x20000004 = (uint32_t)0x4);
5 *(uint32_t *)0x20000008 = (uint32_t)0x7);
6 *(uint32_t *)0x2000000c = (uint32_t)0x1001000);
7 *(uint32_t *)0x20000010 = (uint32_t)0x0);
8 syscall(__NR_bpf , 0x0ul , 0x20000000ul , 0x14ul);

(b) �e sequence of system calls to trigger the zero-day vulnera-
bility.

Figure 8: �e proof-of-concept exploits of CVE-2016-4794
and the zero-day vulnerability.

designed to identify and catalog vulnerabilities in so�ware [23],
such mitigation may not a�ect the usefulness of CVE descriptions.
Unknown vulnerabilities. SemFuzz found one zero-day vulnera-
bility and one undisclosed vulnerability when fuzzing related ones.
For the zero-day vulnerability, it appears around the known �aws.
For the undisclosed vulnerability, we veri�ed that they are similar
problems inside equivalent components. We show them in the
case study (Section 6.5). �is demonstrates the possibility of using
SemFuzz to help �nd similar but unknown vulnerabilities in the
process of fuzzing known vulnerabilities.

6.5 Case Study
We have demonstrated how SemFuzz works using CVE-2017-6347
as an example in previous sections. In this subsection, we will
demonstrate the generation of PoC exploits for a zero-day and an
undisclosed vulnerabilities, and their connections with the known
vulnerabilities.
�e zero-day vulnerability. We discovered a zero-day vulner-
ability in the fuzzing process of CVE-2016-4794, a use-a�er-free
vulnerability in the Berkeley Packet Filter (bpf) subsystem. From
the CVE description, we can learn that the vulnerability could be
triggered using the mmap and bpf system calls. From the corre-
sponding patch code, we found multiple functions that are patched.
By �ltering out those functions not mentioned in CVE or git log, we
got two vulnerable functions: pcpu need to extend and pcpu alloc.

In the fuzzing process, SemFuzz continuously generates system
call sequences that can let the execution run towards pcpu alloc
or pcpu need to extend, and �nally trigger the vulnerability. In a
fuzzing instance, we found that a mutated system call sequence
enters the pcpu need to extend function and calls the free percpu
function, which makes CPU stall (in dead lock status). We discov-
ered this new vulnerability in Linux kernel version 4.6. We further

checked other versions of Linux kernel and found this new vul-
nerability still exists in the latest Linux kernel version 4.11. We
reported this vulnerability to the Linux kernel developer group and
they con�rmed our �nding [7].

Figure 8(a) presents the PoC exploit of CVE-2016-4794 and Fig-
ure 8(b) presents the PoC exploit of the zero-day vulnerability. We
can see that they share the same system call sequence (i.e., mmap
and bpf) with di�erent parameter values (e.g., the 2nd parameter
of bpf is �lled with di�erent values). From this case study, we �nd
that new bugs tend to appear around the known �aws and can be
triggered with similar inputs a�er some mutations.
�e undisclosed vulnerability. We discovered an undisclosed
vulnerability when analyzing the �aw reported by CVE-2016-3841,
a use-a�er-free vulnerability in the networking subsystem. From
the CVE description, we can learn that the vulnerability could be
triggered by using the socket and sendmsg system calls. From its
corresponding patch code, we found multiple functions that are
patched. Even a�er �ltering using CVE and git log descriptions,
there are still 18 vulnerable functions. A�er successfully generating
a PoC exploit, SemFuzz �nds that the vulnerability is triggered in
the function udpv6 sendmsg.

In the fuzzing process, SemFuzz mutates parameters values of
the system call socket (i.e., domain and protocol). In a certain
fuzzing instance, the domain is set to AF INET (standing for ipv4)
and the protocol is set to PROT ICMP (standing for the ICMP
protocol). �en another memory-related vulnerability (i.e., null
pointer deference) is triggered in another function ping v4 sendmsg.
We have reported this vulnerability to the Linux kernel developer
group [8] and they told us that this bug has been patched in the
latest Linux kernel before we reported to them. However, we could
not �nd any publicly released report referring to this bug. So it is
considered to be an undisclosed vulnerability.

7 DISCUSSION
Vulnerability type. In this study, although SemFuzz is able to
handle 16 types of vulnerabilities including double free, use-a�er-
free and memory corruption, etc. However, we do not consider
the vulnerabilities that require speci�c devices to trigger and the
logical vulnerabilities whose abnormal behaviors cannot be directly
observed by SemFuzz. Actually, such limitations are mostly due to
the fuzzer, but not the semantics-based approach. On the contrary,
the semantic information is really helpful (e.g., for a human analyst
to generate exploits). In particular, to fuzz the device-speci�c vul-
nerabilities, one can emulate the required device under the support
of visualization. �e information retrieved from the vulnerability
description can be used to guide the emulation of the required de-
vice. For example, CVE-2016-2782 requires a speci�c USB device
that lacks a bulk-in or interrupt-in endpoint. With the description
about the target USB device, we can leverage vUSBf [21], a USB
device fuzzer to emulate various USB devices that meet these re-
quirements. For the logical vulnerabilities, the description about
the violations can be used as guidances for constructing detector
under the basic understanding of the target subsystem. For exam-
ple, CVE-2015-8660 describes a logical vulnerability which allows
an a�acker to bypass intended access restrictions and to modify
the a�ributes of arbitrary overlay �les. With such description, as

well as the knowledge of the �le system, we can build a detector to
check the behavior of �le a�ribution modi�cation in the overlay
�le system.
Vulnerable targets. In this study, we choose Linux kernel as the
target. Although the approach presented in this paper is speci�c to
the Linux kernel, the basic idea of leveraging semantic information
to guide fuzzing can be applied to other programs (even without
source code), as long as we can obtain enough guidances. For ex-
ample, CVE-2017-3053 (Adobe Reader) discloses a�ected versions
(e.g., 11.0.19 and earlier), vulnerability type (i.e., memory address
leak), vulnerable component (i.e., image conversion engine), and
trigger conditions (i.e., parsing the APP13 segment in JPEG �les).
�ese information can be leveraged to guide a �le format fuzzer
to trigger the vulnerability by mutating the JPEG APP13 segment
and monitoring whether memory address leak occurs in the im-
age conversion engine. Besides CVE, we can also retrieve more
information from other sources of vulnerability descriptions.
Sources of vulnerability descriptions. In this study, we re-
trieved guidances from both the CVE description and the Linux git
logs. In our experiments, sometimes, we found that only one source
of vulnerability descriptions is enough to support the necessary
guidances. We take the vulnerability description with the commit
ID “2b95fda2c4fcb6d6625963f889247538f247fce0” in the Linux git
log as an example. It is a kernel crash report of a double free vulner-
ability. From the log, we can retrieve the vulnerable function (i.e.,
x509 free certi�cate) and the critical variable (i.e., cert->pub->key).
Also, the log presents the call trace of the vulnerable function, from
which we can retrieve the triggering system call (i.e., add key).
Based on the observation, we found that the semantic information
may be obtained from one source, and can also be combined with
the other sources for veri�cation, which could help to increase the
performance of fuzzing. In addition, we also found that besides CVE
and git log, there may be other sources of vulnerability descriptions,
which is also helpful for guidance generation. For example, the
source from FullDisclosure [2] contains the vulnerability informa-
tion of CVE-2016-8655, which helps SemFuzz to get extra guidances
that are not disclosed by CVE and git log, such as “we can reach
packet set ring() by calling setsockopt() on the socket using the
PACKET RX RING option”. We will try to crawl more descriptions
from other sources in future work.

8 RELATEDWORK
Automatic exploit generation. Brumley et al. [28] proposed an
automatic approach to construct proof-of-concept exploits for input-
validation vulnerabilities by seeking an input that fails the newly
added checks in the corresponding patches. Avgerinos et al. [26]
developed a technique to generate exploits for control �ow hijack-
ing a�acks by modeling them as formal veri�cation problems on
the inputs. Hu et al. [34] developed a data-�ow stitching technique
for systematically �nding ways to join data �ows in the program
to generate data-oriented exploits. In addition, there are some
other studies, such as Chainsaw [24] and CraxWeb [35], target-
ing on automatically generating exploits for SQLI and XSS a�acks
on web applications. On the mobile platform, Centaur [39] lever-
ages symbolic execution of Android framework for vulnerability
discovery and exploit generation. All of them rely on generating

constraints on inputs and leverage symbolic execution to further
solve the constraints which let the program run to the vulnerable
functions. By solving the constrains, an exploit could be generated.
However, as mentioned in the introduction, symbolic execution
and constrains solving have di�culties in exploiting deep program
�aws on complicated target programs (e.g., non-linear constraints,
multiple threads). Our study leverages semantics-based fuzzing
to support more types of vulnerabilities. Also, using the semantic
information retrieved from non-code text, the fuzzing process can
be well guided for achieving high performance.
Guided fuzzing. Traditional fuzzing without guiding su�ers from
redundant executions [44]. �at is, an execution instance lets a
program run to the same status as previous instances do, which
greatly reduces the performance of fuzzing. To solve this problem,
previous studies guide the fuzzing process using the running status
of a program and the format of inputs. For example, Sky�re [56]
uses a data-driven seed generation approach, which leverages the
knowledge learned from the vast amount of existing samples to
generate well-distributed seed inputs for fuzzing. VUzzer [49] and
AFLFast [27] leverage static control-�ow and data-�ow analysis to
prioritize deep paths and de-prioritize frequent paths when mutat-
ing the inputs. ArtFuzz [32] dynamically discovers likely memory
layouts to guide the fuzzing process. Our study demonstrates that,
in addition to the running status of a program, the non-code de-
scriptions in CVE and git log also help to avoid redundant runs.
Semantics-based program analysis. Semantic information is
not the �rst use in program analysis. iComment [54] leverages
NLP to analyze program comments and compares the semantics
of comments with the code to determine the inconsistency, which
indicates a bug or a bad comment. aComment [55] extracts annota-
tions from both code and comments wri�en in natural language
to detect interrupt-related concurrency bugs. In addition to code
comments, developer documents are also a good source for min-
ing knowledge to assist program analysis (e.g., constructing API
models [59], extracting security policies [57] and inferring resource
speci�cations [60]). On the mobile platform, some recent studies
apply NLP to understand app descriptions for checking whether
the app requests unnecessary permissions [47] or performs unex-
pected behaviors [33]. Also, some API’s semantics are analyzed
for mapping libraries cross platforms [31]. Di�erent from these
semantics-based program analysis studies, our work is the �rst to
utilize third-party vulnerability descriptions to guide the generation
of PoC exploits.
Repository analysis. In recent years, various code mining ap-
proaches [37, 38] have been proposed to automatically extract im-
plicit programming rules from source code repositories. In addi-
tion, some studies mine so�ware repositories to predict vulnera-
bilities. Neuhaus et al. [46] use the vulnerability database of the
Mozilla project to predict the vulnerable so�ware components.
Meneely et al. [41–43] conduct the research on the correlation be-
tween meta data in code repositories (e.g., code churn, lines of
code, number of reviewers, etc.) and the reported vulnerabilities.
�e studies of [48, 51] mine so�ware repositories to discover the
bug-introducing or �x-inducing commits. Di�erent from them, we
use the code repositories as an information source for generating
guidances for fuzzing.

9 CONCLUSIONS
In this paper, we designed and implemented a semantics-based
approach for automatic generation of proof-of-concept exploits.
Making this end-to-end approach feasible is the intelligent fuzzing
technique guided by the automatically recovered vulnerability-
related knowledge from non-code text reports. Running SemFuzz
over 112 Linux kernel vulnerabilities, 18 of them have been auto-
matically triggered. Interestingly, SemFuzz also found a zero-day
vulnerability and an undisclosed one. Our research extends the au-
tomatic exploit generation for simple input-validation vulnerability
proposed 10 years ago to much more complicated vulnerabilities
including uncontrolled resource consumption, dead lock, memory
corruption, etc. More importantly, our research gives new insights
on the way that vulnerability-related information is shared today.

ACKNOWLEDGMENTS
�e authors would like to thank the anonymous reviewers for their
constructive comments. Also, the authors would like to express
their thanks to Dmitry Vyukov for his Syzkaller tool and his help
in solving the issues regarding Syzkaller. IU authors were sup-
ported in part by NSF CNS-1223477, 1223495, 1527141, 1618493 and
ARO W911NF1610127. IIE authors were supported in part by NSFC
U1536106 and 61728209, National Key Research and Development
Program of China (Grant No.2016QY04W0805), Youth Innovation
Promotion Association CAS, and strategic priority research pro-
gram of CAS (XDA06010701). RUC authors were supported in part
by NSFC 91418206, 61170240 and 61472429.

APPENDIX
Table 4 gives a detailed description of the 18 CVEs that can be
successfully auto-exploited by SemFuzz. We present the seman-
tic information retrieved from their CVE descriptions and git logs
as guidance used for fuzzing, including the a�ected version, vul-
nerability type, vulnerable functions, critical variables and system
calls.

REFERENCES
[1] 2016. 2016 Financial Industry Cybersecurity Report.

h�ps://cdn2.hubspot.net/hubfs/533449/SecurityScorecard 2016 Financial
Report.pdf. (2016).

[2] 2016. FullDisclosure: CVE-2016-8655 Linux af packet.c race condition (local
root). h�p://seclists.org/oss-sec/2016/q4/607. (2016).

[3] 2016. Kernel: Add KCOV Code Coverage. h�ps://lwn.net/Articles/671640/.
(2016).

[4] 2016. Syzkaller. h�ps://github.com/google/syzkaller. (2016).
[5] 2016. Yahoo: Hackers Stole Data On Another Billion Accounts.

h�ps://www.forbes.com/sites/thomasbrewster/2016/12/14/yahoo-admits-
another-billion-user-accounts-were-leaked-in-2013. (2016).

[6] 2017. Application Vulnerability: Trend Analysis and Correlation of Coding Pat-
terns across Industries. h�ps://www.cognizant.com/whitepapers/Application-
Vulnerability-Trend-Analysis-and-Correlation-of-Coding-Pa�erns-Across-
Industries.pdf. (2017).

[7] 2017. Bug 195709. h�ps://bugzilla.kernel.org/show bug.cgi?id=195709. (2017).
[8] 2017. Bug 195807. h�ps://bugzilla.kernel.org/show bug.cgi?id=195807. (2017).
[9] 2017. Common Vulnerabilities and Exposures. h�ps://cve.mitre.org. (2017).

[10] 2017. Common Weakness Enumeration. h�ps://cwe.mitre.org. (2017).
[11] 2017. CWE: Improper Input Validation.

h�ps://cwe.mitre.org/data/de�nitions/20.html. (2017).
[12] 2017. FullDisclosure Mailing List. h�p://seclists.org/fulldisclosure. (2017).
[13] 2017. Information Security Resources.

h�ps://www.sans.org/security-resources/blogs. (2017).
[14] 2017. Krebs on Security. h�ps://krebsonsecurity.com. (2017).
[15] 2017. Linux Kernel Git Repositories. h�ps://git.kernel.org. (2017).

[16] 2017. Linux man pages online.
h�p://man7.org/linux/man-pages/index.html. (2017).

[17] 2017. National Vulnerability Database. h�ps://nvd.nist.gov. (2017).
[18] 2017. pyStatParser. h�ps://github.com/emilmont/pyStatParser. (2017).
[19] 2017. STP Constraint Solver. h�p://stp.github.io. (2017).
[20] 2017. Vulnerability. h�ps://en.wikipedia.org/wiki/Vulnerability (computing).

(2017).
[21] 2017. vUSBf. h�ps://github.com/schumilo/vUSBf. (2017).
[22] 2017. WannaCry Ransomware A�ack.

h�ps://en.wikipedia.org/wiki/WannaCry ransomware a�ack. (2017).
[23] 2017. What is CVE and How Does It Work?

h�p://www.csoonline.com/article/3204884/application-security/what-is-
the-cve-and-how-does-it-work.html. (2017).

[24] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2016. Chainsaw: Chained Automated Work�ow-Based Exploit Generation.
In Proceedings of the 23rd ACM Conference on Computer and Communications
Security (CCS 2016). ACM, 641–652.

[25] Frances E Allen. 1970. Control Flow Analysis. In ACM SIGPLAN Notices, Vol. 5.
ACM, 1–19.

[26] �anassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic Exploit Generation. Commun.
ACM 57, 2 (2014), 74–84.

[27] Marcel Böhme, Van-�uan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Proceedings of the 23rd ACM Con-
ference on Computer and Communications Security (CCS 2016). ACM, 1032–1043.

[28] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Auto-
matic Patch-Based Exploit Generation is possible: Techniques and Implications.
In Proceedings of the 29th IEEE Symposium on Security & Privacy (S&P 2008). IEEE,
143–157.

[29] Yan Cai and Lingwei Cao. 2015. E�ective and Precise Dynamic Detection of
Hidden Races for Java Programs. In Proceedings of the 10th Joint Meeting on
Foundations of So�ware Engineering, (FSE 2015). 450–461.

[30] Eugene Charniak. 1996. Tree-Bank Grammars. In Proceedings of the 10th National
Conference on Arti�cial Intelligence (AAAI 1996). 1031–1036.

[31] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following Devil’s
Footprints: Cross-Platform Analysis of Potentially Harmful Libraries on Android
and iOS. In Proceedings of the 37th IEEE Symposium on Security & Privacy (S&P
2016). 357–376.

[32] Kai Chen, Yingjun Zhang, and Peng Liu. 2016. Dynamically Discovering Likely
Memory Layout to Perform Accurate Fuzzing. IEEE Trans. Reliability 65, 3 (2016),
1180–1194.

[33] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking App Behavior Against App Descriptions. In Proceedings of the 36th
International Conference on So�ware Engineering (ICSE 2014). ACM, 1025–1035.

[34] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-Oriented Exploits. In Proceedings of
the 24th USENIX Security Symposium (Security 2015). 177–192.

[35] Shih-Kun Huang, Han-Lin Lu, Wai-Meng Leong, and Huan Liu. 2013. Craxweb:
Automatic Web Application Testing and A�ack Generation. In Proceedings of
the 7th IEEE International Conference on So�ware Security and Reliability (SERE
2013). IEEE, 208–217.

[36] James C King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394.

[37] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large so�ware code. In
Proceedings of the 13th ACM SIGSOFT International Symposium on Foundations of
So�ware Engineering (FSE 2005). 306–315.

[38] Bin Liang, Pan Bian, Yan Zhang, Wenchang Shi, Wei You, and Yan Cai. 2016.
AntMiner: mining more bugs by reducing noise interference. In Proceedings of
the 38th International Conference on So�ware Engineering (ICSE 2016). 333–344.

[39] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, Neng Gao, Min
Yang, Xinyu Xing, and Peng Liu. 2017. System Service Call-oriented Symbolic
Execution of Android Framework with Applications to Vulnerability Discovery
and Exploit Generation. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys 2017). 225–238.

[40] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a Large Annotated Corpus of English: �e Penn Treebank. Computational
Linguistics 19, 2 (1993), 313–330.

[41] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez
Tejeda, Ma�hew Mokary, and Brian Spates. 2013. When a Patch Goes Bad:
Exploring the Properties of Vulnerability-Contributing Commits. In Proceedings
of the 7th ACM/IEEE International Symposium on Empirical So�ware Engineering
and Measurement, (ESEM 2013). IEEE, 65–74.

[42] Andrew Meneely, Alberto C Rodriguez Tejeda, Brian Spates, Shannon Trudeau,
Danielle Neuberger, Katherine Whitlock, Christopher Ketant, and Kayla Davis.
2014. An Empirical Investigation of Socio-Technical Code Review Metrics and
Security Vulnerabilities. In Proceedings of the 6th International Workshop on Social

https://cdn2.hubspot.net/hubfs/533449/SecurityScorecard_2016_Financial_Report.pdf
https://cdn2.hubspot.net/hubfs/533449/SecurityScorecard_2016_Financial_Report.pdf
http://seclists.org/oss-sec/2016/q4/607
https://lwn.net/Articles/671640/
https://github.com/google/syzkaller
https://www.forbes.com/sites/thomasbrewster/2016/12/14/yahoo-admits-another-billion-user-accounts-were-leaked-in-2013
https://www.forbes.com/sites/thomasbrewster/2016/12/14/yahoo-admits-another-billion-user-accounts-were-leaked-in-2013
https://www.cognizant.com/whitepapers/Application-Vulnerability-Trend-Analysis-and-Correlation-of-Coding-Patterns-Across-Industries.pdf
https://www.cognizant.com/whitepapers/Application-Vulnerability-Trend-Analysis-and-Correlation-of-Coding-Patterns-Across-Industries.pdf
https://www.cognizant.com/whitepapers/Application-Vulnerability-Trend-Analysis-and-Correlation-of-Coding-Patterns-Across-Industries.pdf
https://bugzilla.kernel.org/show_bug.cgi?id=195709
https://bugzilla.kernel.org/show_bug.cgi?id=195807
https://cve.mitre.org
https://cwe.mitre.org
https://cwe.mitre.org/data/definitions/20.html
http://seclists.org/fulldisclosure
https://www.sans.org/security-resources/blogs
https://krebsonsecurity.com
https://git.kernel.org
http://man7.org/linux/man-pages/index.html
https://nvd.nist.gov
https://github.com/emilmont/pyStatParser
http://stp.github.io
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://github.com/schumilo/vUSBf
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
http://www.csoonline.com/article/3204884/application-security/what-is-the-cve-and-how-does-it-work.html
http://www.csoonline.com/article/3204884/application-security/what-is-the-cve-and-how-does-it-work.html

So�ware Engineering (SSE 2014). ACM, 37–44.
[43] Andrew Meneely and Oluyinka Williams. 2012. Interactive Churn Metrics: Socio-

Technical Variants of Code Churn. ACM SIGSOFT So�ware Engineering Notes 37,
6 (2012), 1–6.

[44] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32–44.

[45] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumi-
tras. 2015. �e A�ack of the Clones: a Study of the Impact of Shared Code on
Vulnerability Patching. In Proceedings of the 36th IEEE Symposium on Security &
Privacy (S&P 2015). IEEE, 692–708.

[46] Stephan Neuhaus, �omas Zimmermann, Christian Holler, and Andreas Zeller.
2007. Predicting vulnerable so�ware components. In Proceedings of the 14th
ACM conference on Computer and Communications Security (CCS 2007). ACM,
529–540.

[47] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications. In Proceed-
ings of the 22nd USENIX Security Symposium (Security 2013). 527–542.

[48] Henning Perl, Sergej Dechand, Ma�hew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. Vcc�nder: Finding Potential
Vulnerabilities in Open-Source Projects to Assist Code Audits. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS 2015). ACM, 426–437.

[49] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giu�rida,
and Herbert Bos. 2017. VUzzer: Application-Aware Evolutionary Fuzzing. In Pro-
ceedings of the 24th Annual Network and Distributed System Security Symposium
(NDSS 2017). ISOC.

[50] Edward J Schwartz, �anassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In Proceedings of the 31st IEEE
Symposium on Security & Privacy (S&P 2010). IEEE, 317–331.

[51] Jacek Śliwerski, �omas Zimmermann, and Andreas Zeller. 2005. When Do
Changes Induce Fixes?. In ACM SIGSOFT So�ware Engineering Notes, Vol. 30.

ACM, 1–5.
[52] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbe�a, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing �rough Selective Symbolic Execution. In Pro-
ceedings of the 23nd Annual Network and Distributed System Security Symposium
(NDSS 2016).

[53] Michael Su�on, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Pearson Education.

[54] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. iComment: Bugs
or Bad Comments?. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP 2007). ACM, 145–158.

[55] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining
annotations from comments and code to detect interrupt related concurrency
bugs. In Proceedings of the 33rd International Conference on So�ware Engineering
(ICSE 2011). IEEE, 11–20.

[56] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Sky�re: Data-Driven
Seed Generation for Fuzzing. In Proceedings of the 38th IEEE Symposium on
Security & Privacy (S&P 2017). IEEE.

[57] Xusheng Xiao, Amit Paradkar, Suresh �ummalapenta, and Tao Xie. 2012. Auto-
mated Extraction of Security Policies from Natural-Language So�ware Docu-
ments. In Proceedings of the 20th ACM SIGSOFT International Symposium on the
Foundations of So�ware Engineering (FSE 2012). ACM, 12.

[58] Junfeng Yang, Ang Cui, Salvatore J Stolfo, and Simha Sethumadhavan. 2012.
Concurrency A�acks. HotPar 12 (2012), 15.

[59] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao,
and Feng Qin. 2016. Automatic Model Generation from Documentation for Java
API Functions. In Proceedings of the 38th International Conference on So�ware
Engineering (ICSE 2016). ACM, 380–391.

[60] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring Resource Speci�-
cations from Natural Language API Documentation. In Proceedings of the 24th
IEEE/ACM International Conference on Automated So�ware Engineering (ASE
2009). IEEE, 307–318.

Table 4: Details of the 18 proof-of-concept exploits.

CVE Version Vulnerability Type Vulnerable Function Critical Variables System Calls
CVE-2015-0275 4.0.9 Denial of service ext4 zero range inode.i size fallocate(FALLOC FL ZERO RANGE)
CVE-2015-1333 4.1.3 Uncontrolled resource consumption key link end edit add key()
CVE-2015-5706 4.0.3 Use a�er free path openat open(O TMPFILE)

CVE-2015-6937 4.2.3 Null pointer dereference rds conn create trans socket()
bind()

CVE-2015-7872 4.2.6 Denial of service key gc unused keys keyring.type data.link keyctl()

CVE-2015-7990 4.3.2 Race conditions rds sendmsg trans socket()
bind()

CVE-2016-0728 4.4 Use a�er free join session keyring keyctl(KEYCTL JOIN SESSION KEYRING)

CVE-2016-10147 4.8.14 Null pointer dereference mcryptd check internal
mcryptd create hash algt socket(AF ALG)

CVE-2016-3134 4.5.2 Memory corruption

unconditional
get chainname rulenum
mark source chains
check under�ow
check entry size and hooks

ipt entry.next o�set socket(AF INET)
setsockopt(IPT SO SET REPLACE)

CVE-2016-3841 4.3.2 Use a�er free

dccp v6 send response
dccp v6 request recv sock
dccp v6 connect
inet6 destroy sock
inet6 sk rebuild header

ip6 datagram connect
inet6 csk route req
inet6 csk route socket
inet6 csk xmit
do ipv6 setsockopt
do ipv6 getsockopt
raw6 sendmsg
cookie v6 check
tcp v6 connect
tcp v6 send synack
tcp v6 syn recv sock
udpv6 sendmsg
l2tp ip6 sendmsg

np.opt socket(AF INET6)
sendmsg()

CVE-2016-4482 4.6 Information leak / disclosure proc connectinfo ci ioctl(USBDEVFS CONNECTINFO)

CVE-2016-4794 4.6 Use a�er free pcpu need to extend
pcpu alloc

chunk.map extend work
pcpu lock

mmap()
bpf()

CVE-2016-6213 4.8.17 Uncontrolled resource consumption

commit tree
umount tree
a�ach recursive mnt
alloc mnt ns
copy mnt ns
create mnt ns
propagate one

mount(MS BIND)

CVE-2016-8646 4.3.5 Null pointer dereference hash accept socket()
CVE-2016-9555 4.8.7 Bu�er over-read sctp sf ootb socket(IPPROTO SCTP)

CVE-2016-9793 4.8.13 Memory corruption sock setsockopt sk sndbuf
sk rcvbuf

socket()
setsockopt(SO SNDBUFFORCE)

CVE-2017-6074 4.9.11 Double free dccp rcv state process ireq.pktopts
skb

socket(AF INET6)
setsockopt(IPV6 RECVPKTINFO)

CVE-2017-6347 4.10 Bu�er over-read ip cmsg recv checksum skb.len socket(AF INET, SOCK DGRAM, 0)
sendto(MSG MORE, INADDR LOOPBACK)

	Abstract
	1 Introduction
	2 Background
	3 SemFuzz: Design Overview
	4 Semantic Information Retrieving
	5 Semantics-Guided Fuzzing
	5.1 Setting up the Testing Environment
	5.2 Generating Seed Input
	5.3 Coarse-level Mutation
	5.4 Fine-grained Mutation

	6 Evaluation and Findings
	6.1 Settings
	6.2 Effectiveness
	6.3 Performance
	6.4 Findings
	6.5 Case Study

	7 Discussion
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

